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PREFACE

This report describes work on new design methods for filters used

in discrete data control systems. Design methods are developed first

for sampling rates to minimize the bit requirements for each filter

coeffic ient then new design methods for digital filters that minimize

ihe need for digital multiplication are described . Interactive soft-

ware for aiding design and implementation of digital filters was

written and is described in the report.
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INTRODUCTION

This report describes work on new design and implementation

methods for filters used in discrete—data control systems.

Specifically, the following tasks were undertaken :

1. The development of design methods that use• the sampling interval as a design parameter
to minimize the bits required to represent
each filter coefficient .

2. The development of new design methods for
digital control algorithms to minimize the
need for digital multiplication.

3. The development of interactive software to
aid in the design and implementation of
digital control algorithms.

4. A method of fault analysis for digital
control algorithms.

Each task is discussed with details given via copies of each

report generated during the contract period . These reports
are provided as appendices.

1. DESIGN USING THE SAMPLING RATE AS A DESIGN PARAMETER

Both digital and analog filter synthesis generally involve

tradeoffs. For instance, low ordered filters may have either

sharp rolloff or flat passbands but not both . High order filters

can have excellent frequency response characteristics but involve

a large number of components or multiplications, both of which

increase errors. In sampling time synthesis there are tradeoffs

as well. Exact coefficients can be easily found for quite a

few first order filters but the sampling time which yields such

coefficients causes the filters to have serious magnitude errors

due to aliasing. On the other hand , a sampling time which is

very short will cause the filter frequency response to be very
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• sensitive Lo coef f ic ien t  quantizatlon.  The tradeoff  between

aliasing errors and coefficient quantization errors is to be

kept In mind in synthesizing sampling times for bilinear ~~
—

transform filters. In fact, the tradeoff considerations are

an important step in the synthesis procedure.

Fi rst Order Filters

The technique for synthesizing sampling time is essentially

the same for both f i rst and second order f i l ters.  However ,

because there are only two coefficients in the first order

filters and because frequency independent bounds can be found

for the first order filters, the first order case is developed

f i rst .

For the design a realistic approach is to make the magnitude

(or phase) response errors as samll as possible while retaining

a short enough sampling interval to avoid aliasing errors. One

means of finding coefficients which will give small error is to

generate a number of sets of coefficients and then find the

truncated and bounded values for each. Next, take the differ-

ence between the designed coefficients and the respective quan-

tized values and determine the maximum error for each set of

coefficients. The set with the smallest maximum magnitude error

is then the set of coefficients to use unless the sampling

interval associated with that set is too long to meet the aliasing

specifications. A maximum bound on frequency error could be

given and the sampling times and coefficients which give a mag—

nitude error less than the bound would be considered. If the

frequency response error criterion is not met , then it is

-

~ 
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necessary to generate more coefficients using different sampling

t imes than used previously and repeat the procedure above. If

the magnitude response error criter ion is not satisfied after

several hundred sampling times have been tried it would be

necessary to use a longer word length to realize the coefficients.

While the procedure above seems quitc ong, it is possible

to combine all of the steps of the process into an interactive

computer program. The block diagram of such a program is shown

in Figure 1.1.

The f i rst  block of Figure 1.1 asks for input of the analog

filter coefficients, the word length desired , the maximum absolute

value for the magnitude response error , A IHI, and the maximum

number of iterations to be done before it is decided that a

longer word length is necessary. Block 2 initializes the sampling

time for a certain pass. On the first pass the sampling time

will be set to .Ol’t as an initial value where t is themax max
maximum value the sampling interval can be , set to avoid aliasing

errors. Blocks 3 and 4 are self—explanatory , where block 3 uses

equations for a digital fil ter found from an analog filter via

the bilinear z—transform to generate the digital coefficients.

The f i f th  and sixth blocks are similar to each other. In each,

the difference is found between the designed (infinite precision)

digital coefficients and the quantized coefficients. The differ-

ences ar e f ound f o r  the rounded coef f icients and then A I H 1 is

derived by using the magnitude of the desired and actual filters.

The same calculations are also done for the truncated coefficients

Then A l i l ! of the rounded values is compared to the A IH I of the

truncated values and the smallest of those two A I H I ’ s is chosen
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for that sampling interval. If the A IH I chosen is less than the

maximum allowable magnitude error , specified in the first block,

• then the sampling time and the associated digital coefficients

are printed out along with the type of quantization to be used .

Also , if the Aj H j chosen on a particular iteration is smaller

than any chosen on any previous iteration then It is stored

along with its corresponding sampling interval and the previously

stored values are discarded .

Whether or not A I H I is less than the previous smallest

value, the sampling time is increased by .Ol~t .  If the sam-

pling time is then less than or equal to t a new set of coef—max

ficients, differences , and magnitude response errors is gener-

ated . If the sampling time is greater than t then themax

procedures of blocks 15 through 18 are executed. If there is

at least one A IH I of those considered which meets the error

criterion then the sampling time which gave the smallest t~~H I

is output along with the A IHj . Otherwise a test is done to

see if the maximum number of iterations have been run through.

If they have then it is advisable to increase the word length

and run through the iterations again. If the maximum number

of iterations has not been reached then a new set of sampling

times should be tried. A search can be made around the immediate

area of the sampling time which gave the lowest A J H I ,  using a
smaller sampling time increment for the new iterations. Another

possibility is to merely offset the new sampling times from those

of the previous pass by a certain amount, for example •OOl tnax~

A FORTRAN program which realizes the block diagram of Figure Li
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has been used to illustrate the procedure.

Second Order Filters

The block diagram in Figure 1.1 for f i rs t  order f i l ter

synthesis serb -
~ as well for second order filters. If a second

order low pass section is being designed , a possible evaluation

technique would be to evaluate A I H I  at ~2 = 0 and at the 3—db

point for every sampling time considered . For a bandpass struc-

ture A IH I could be calculated at the 3—db points and the pole

frequency. in the example programs the user is allowed to

choose what radian frequencies the magnitude error is to be

evaluated at, and how many frequencies are to be evaluated.

The block diagram in Figure 1.1 allows every sampling

interval and corresponding set of coefficients which have a

A IH I smaller than the maximum error bound to be printed out.

The reason for this is very simple. In some cases a certain

sampling rate will be more desirable than another even if it

does not give the minimum magnitude response error. Such a

case occurs when the clock rate for the filter is limited to a

certain range of values. By printing all sampling times which

have magnitude errors within the desired bound , there is more

design freedom permitted.

So far the discussion has centered about magnitude response

design. Ho-~”.ver, a bilinear z—transform digital filter will

not generally have the same phase response as the corresponding

analog filter. However, digital filters do have phase response
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and it is sometimes desirable to retain the accuracy of that

response. It is possible to make the phase response accurate

in the same manner that was used for the magnitude response.

In fact, the block diagram of Figure 1.1 can be used for the

phase by replacing HI by 0 in the diagram. A longer flow

chart could be developed which allows filters with accurate

phase and magnitude to be designed.

In terms of design limitations , the primary considerations

are those of aliasing and processor (or component) speed . When

deriving a program to find a sampling time which results in

small frequency response error, it is necessary to put  an upper

F bound on the length of the sampling interval to reduce aliasing

errors.  If the sampling rate is too low , a filter will be

aliased to the point where it no longer performs its designed

task. To reduce aliasing errors, it could be required that the

sampling rate be at least ten times the highest pole frequency .

There are various such rules of thumb aimed at avoiding aliasing

errors and which ever is appropriate should be used.

Digital hardware is limited in terms of clock rates it can

operate at. Some computers can perform an instruction in a

matter of nano—second s while others require several micro—seconds

to do the same instruction. Similarly, discrete digital com-

ponents such as multipliers, adders, and shift registers are

limited in speed. When designing a digital filter it is important

to realize the constraint of digital hardware speed on sampling

time. If a computer program is used to realize a filter , the

program may be ten, twenty, or even over a hundred instructions 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~—~~
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• long. Often , large filter structures are better realized using

discrete digital components which are dedicated to the filtering

because the discrete components have an advantage in speed over

• a computer program. Whatever method of realization is used

though, ti ~ design should not allow the clock rate of the filter

exceed the speed of the structure used to realize it.

Example Designs

A commonly used filter design is the maximally flat , or

Butterworth , filter.  The low pass Butter-worth filter has the

property that the filter magnitude response is as flat as possible

• at w 0. For the present example , a f i f t h  order Butterworth

low pass digital filter is synthesized using the method de-

scribed in the first part of this chapter. The analog transfer

function , H( s),  is given by

1 1 1H(s) 
~~ 2 2 (1.1)

s +.618s+l.0000 s +l.618s+l.0000

so that H(s) has unity gain and unity bandwidth. The example

demonstrates the use of both the first and second order synthesis

programs. The bilinear z—transform allows the transfer function

to be broken up into first and second order cascade sections so

there is no partial fraction expansion to worry about. For the

example, the assumptions are that an eight bit word and a magnitude

error of less than 10~~ are desired.

The first order section, H1
(s) ,  of  H ( s)  is given by

= = (1.2)
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Figure 1.2 shows the sequence of interactive inputs to the program.

The first three inputs are self explanatory. After the word

length was input, the program used 100 sampling times between 0

and the maximum sampling time allowed. An appropriate sampling

time was not found and the graph of Figure 1.3 resulted . The

graphs are not meant to be an absolute means of measuring the

error of the filter but merely a way of determining whether to

proceed or to try another word length or error bound . The next

input given in Figure 1.2 was a 1(one) to indicate that on the

next iteration the same range of sampling times was to be used

but the sampling times would be offset from the previous set of

sampling times. The amount that the second set was offset was

one—tenth of the spacing of the first set of sampling times.

Therefore, there was a sampling time selected between each of

the first sampling times. Again the error bound was not met ,

resulting in Figure 1.4 which is very similar to Figure 1.3.

Rather than continue on the same track, it was felt that a better

approach would be to “blow up” the region around the sampling

interval which gave the minimum error. 100 sampling times were

chosen between the two sampling intervals which were adjacent to

the point which gave the least error. The input of 2 in Figure

1.2 resulted in the expansion about the minimum point and the

graph of Figure 1.5. The error bound was still not met but there

seemed to be promise so another expansion was done. Figure 1.7

shows that the error bound was finally satisfied by three sampling

times. The output lists the three sampling times which allowed

the error criterion to be met and the corresponding coefficients
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and the type of coefficient quantization to be used on each set

of coefficients. Figure 1.6 shows the graph of the final expansion.

The listing on Figure 1.7 prints , as a final set of values , the

minimum magnitude error found and the sampling time which gave

the minimum error . If there had been no sampling times which

caused the error bound to be satisfied on that last round , then

it probably would have been necessary to use a longer word length

or accept a slightly relaxed error bound. Sometimes it is possible

to do enough passes to find a sampling time which gives low

enough error but in order to set the sampling time it would require

an infinitesimal adjustment and so the sampling time is not prac-

tically realizable. Even with programmable clocks, the adjustment

is usually only down to about ~~~~ so adjustments below that

level are not possible.

The two second order sections 11
2
(8) and 11

3
(s) ,  are given

by

H2(s) 2 
1 (1.3)

s +.618s+1.0000

H
3

( s )  
2 (1.4)

s +l.6l8s+l.0000

Since there is no one general frequency which results in a maximum

for the partial derivatives in the expansion AR [1,2 ] ,  then

several frequencies should be chosen to check those partial

derivatives. In the examples, four frequencies were chosen for

each section. Three were in the pasbi,and and one was in the

Th.

~

. *

~
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• transition band of each filter section. The graphs of Figures

1.8 and 1.9 show the relative errors of the filters against the

sampling times for H
2
(z) and H

3
(z), respectively . Some of the

• errors are so large that most of the error points appear to be

very small but, in reality, only a few of the plotted points

resulted in filters which satisfied the error bounds.

The second order filter errors behave much differently than

the first order filter errors. The first order errors tend to

decrease as the sampling interval gets longer, while the second

order errors tend to increase. Also , the second order errors ,

with a few exceptions as noted on the graphs, are generally

much lower than the first order errors. Therefore, it seems

that the word length restrictions on a filter would come from

the filter ’s first order section or sections. The design tech-

nique, then, should state that the first order sections should

be synthesized before the second order sections in order to get

a good bound on the word length requirements.

After considerable effort with more examples this approach

appeared to be somewhat limited , in fact, the method does not

generally work. To simplif y the coefficient problem and to

totally eliminate the multiplier , a different procedure was tried

as shown in the next section.

• - • - -~~~~~~--
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2. NEW DESIGN METHODS FOR DIGITAL CONTROL ALGORITHMS

The use of conventional digital control algorithms requires

• the implementation of a recursive difference equation on a com-

puter . Here multiplication and addition operations are employed .

The finite length arithmetic causes roundoff errors to occur and

these errors can be highly dependent on the sampling interval .

Of particular importance are the coefficient rounding errors ,

because if the coefficients are not rounded properly the al-

gorithm may be unstable or not exhibit the desired magnitude

and phase characteristics. Filter designs employing the bilinear

z—transform are very subject to these errors because the coef-

ficient sensitivity becomes increasingly critical as the filter

order increases.

To avoid the whose process of multiplication and to decrease

the filter sensitivity to the sampling interval, a radical new

approach to filter implementation has been investigated . The

initial idea is that any filter can be approximated by a non—

recursive filter with a transfer function of the form

N
11(z) = 

~ 
akk=O

Now if the filter can be structured in such a way to make the coef-

ficients powers of 2, all multiplication can be done via shifting.

If this is done, high order nonrecursive structures can be used

to approximate even low order recursive filters with definite

advantages

The first advantage is that implementation can be done

directly using large scale integrated circuits. Such an imple—
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menta tion allows the shif t ing operations to be designa ted under

• computer control so that a design can be used to implement a

variety of different filters.

• The second advantage is that linear phase can be implemented

• and this can be very useful in control system design .

The details of this work are provided by the report in

Appendix 1. Here the design methodology along with several

examples provide the necessary background for this implementation .

Experiments have also been tried on recursive filters using

the implementation procedure given in the report. The results

up to this time are mixed , however, using the integer design

approach we feel that good recursive filter implementations can

be obtained .

_  _ _  . .-•-- ‘ ,
~~~~-- -  --~~~
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3. INTERACTIVE SOFTWARE

Four interactive digital filter design packages were written

that are valuable to the designer of digital control algorithms

and/or digital signal processing algorithms. These are:

a. A Digital Filter Design Program Utilizing
the Bilinear Z Transform

b. Programs for Weighted Least Squares Design
of Nonrecursive and Recursive Digital
Filters

c. A Fortran IV Design Program for Low—Pass
Butterworth and Chebychev Digital Filters

d. A Fortran IV Design Program for Butterworth
and Chebychev Band-Pass and Band—Stop
Digital Filters

All of the programs are written in FORTRAN and run on the

DEC PDP—ll and the DEC GT—40 Graphics System. The detailed

descriptions are given in Appendices B, C, D and F. Card

decks were sent to WPAFB during the course of the contract.

• 4. FAULT DETECTION

Because of the need to understand how well a digital control

algorithm is operating, some work was done on detecting when a

discrete time algorithm is not operating correctly due to hard-

ware or software failure. A parameter identification algorithm

was used with the method being described via the report of

Appendix E.

-~ ‘ — -  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ • •
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ABSTRACT

The difference routing digital filter (DRDF) Is a FiR

filter whose coefficients are equal to zero, or integral powers

of two. The basic DRDF structure is reviewed , and two coefficient

restrictions are detailed that will insure bounded input , bounded

output stability as well as a finite impulse response. Next ,

• three parallel structures are presented . Each of these new

structures will significantly reduce the EMS error between the

desired impulse response and the actual filter response. The

• optimum structure appears to be a filter with a parallel struc—

tured transversal part with integer valued taps followed by a

recursive part that in the low pass case is a digital integrator.

For this new structure , an analysis is given of the RNS error

performance in both the time and frequency domain. This analysis

is supported by extensive computer simulation results.
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• I .  I N T R O D U C T I O N

Finite impulse response (FIR) digital filter structures are

attractive in a variety of applications. Among their advantages

are the inherent stability and the ease of realizing a linear

phase characteristic. Numerous methods now exist [l]—[3] for

the design of FIR structures.

One disadvantage of conventional digital FIR filters , in

many applications, is the slow operating speed due to the large

number of required multiplies. Various methods [4], [5] and

[6] have been proposed in the past to reduce or eliminate this

multiplier requirement . This paper focuses on the low pass

difference routing digital filter (DRDF) [4]. This filter

• structure consists of a transversal part with coefficients

restricted to be zero, or integral powers of two. As originally

proposed , the DRDF is limited in the minimum EMS error that can

be obtained between the ideal and actual filter impulse response.

To reduce this error , three parallel structures are presented ,

each of which can significantly reduce the EMS error between the

• desired filter response and the actual filter response. These

three methods are all structurely similar , but there are distinct

differences in the design philosophy used . In the first two

methods, a parallel structure is created that approximates the

error that would have occurred in the original design. This

error signal is added in such a way as to provide overall error

reduction. In both cases, the parallel structure can be itnple—

j mented with minimal additional hardware. The third approach ,

which appears to be optimum , also uses a parallel filter structure.

I 
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• In this latter case, the purpose of the parallel structure is

• to provide integer valued taps that more accurately approximate

the desired filter function. This third approach has two prin-

ciple advantages over the first two methods: (1) reduced hard-

ware requirements , and (2) a more straightforward and logical

design procedure.

Several examples o improved performance with the new

structures are given using computer simulation. An analysis

of the EMS error performance of the optimum structure is also

given in both the time and frequency domain . The analysis is

seen to agree very favorably with computer simulation results.

This work was all done with low pass filter designs.

However , similar results can also be obtained for both band

pass and high pass circuits.
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II. LOW PASS DRUF STRUCTURE

The structure of a low pass DRDF is shown in Figure 1. The

coefficients a .... a of the transversal part are restricted
o N-i

to be zero or integer powers of two. The recursive part is a

digital integrator with a single coefficient b1 
equal to minus

one. The coefficients of the transversal part are chosen to be

approximations to the differences between successive values of

the desired filter impulse response h.D
[nT ]

a. h
D [J T] - h

D
[(j_l)T] (1)

Thus , if the input signal to the filter is a unit impulse ,

6 [nT]=l f o r n = O
(2)

for  n~~~O.

Therefore, the output y(nT) will be an approximation to the

desired impulse response itself

N-i
h
D
[nT] y[nT J = y[(n—l)TI + ~ a . iS[(n—j)T] (3)

j=O ~

The use of a digital integrator places one restriction

on the a
3 
coefficients to insure a finite impulse response

(FIR) filter , the sum of the a
3 

coefficients must be zero.

This is shown as follows. If the filter is FIR , then we

desire y[(N—l)T] to be zero.

Hence:
y[(N—1)T] = y[(N—2)T] + aN l  = 0 (4)

but , N—2
y((N—2)T] = E a. (5)

3=0 ~ 

- 

~~~~ •~~~~~~~~~ --•--------- —
~

-— —
~~
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Therefore:
N—i

~ a . 0 (6)

j=O ~

The restriction of equation six is not a practical problem.

Since the desired finite impulse response in practice will

always damp out to zero at (N—l)T as in Figure 2, we have:

N—i

hD
[ (N _ l ) T l  = 0 = y [ ( N — l ) T ]  ) a . (7)

j~~O -~

Therefore , the restrictions on the a. coefficients are:3

o , +2 K for  K 0, 1, 2,

N-i
E a. O (8)

3=0 ~
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I I I .  DRD F OPERATION AND DESIGN

The design of a DRDF is based on approximating a desired

finite impulse response. Consider a desired impulse response

hD
[nT], the first few samples of which are shown in Fi gure 3.

Without loss of generality , assume hD
[O] is zero. Further ,

consider tha t h
D L nT] has been amplitude scaled (hD

[nT ) = F~ h [nT ] )

such that the maximum change is:

max 1h 5 [j T ] — h [(j—l)T}~ 2
Km

where Km is the largest exponent being considered in the design.

Th us, the DRDF will approximate a scaled version of the desired

impulse. This scaled value is then multiplied by a scale fac tor

(F) to give the desired impulse response as in Figure 4. This

will insure that the coefficient values will be able to follow

the maximum slope of the scaled impulse response , h [nT].

Note that:

max hD[JT] 
— I

D
[(j  l ) T ] j  = F 2 Km

Therefore , as Km increases, the scale factor F will get smaller.

The value of the first coefficient , a is selected from 0, ±2 I
~;

K = 0, 1, ... , Km so as to be closest to the first change

h [T1 — h
~
[O]. Since h [O] equals zero , we have

a h [TJ (9)

Ihe design proceeds recursively, selecting a • from 0, +1 , ±2 ...
to minimize :

j-l
a — {h [(j+l)TJ — 

~ 
ak } I  (10)

3 k=O
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FIgure 5 is a comparison of the entire desired impulse response

sequence h
D
[nTl and the error for the DRDF approximation for

Km=4. Figure 6 is a comparison of the desired magnitude response

and the error for the DRDF magnitude response. For this example

T = 0.05 sec and N = 200. The “IDEAL” Chebychev impulse response

used in this and all subsequent examples was obtained from syn-

thetic division of the 11(Z) found using the impulse invariant

design [7].

Figure 7 is a plot of the ENS error between the desired

impulse response and the actual DRDF impulse response for the

four pole Chebychev filter . The EMS error is expressed as a

percentage of the peak value of the impulse response, and it

is plotted vs Km. It is seen that little improvement results

beyond a Km of 3 or 4. The parallel structure introduced in the

next section provides a method of significantly reducing this

ENS error. H

IV. PARALLEL DRDF STRUCTURE H

It was shown in the previous section that increasing Kin

beyond 3 or 4 do~ - little to further reduce the percentage ENS

error . There may be many applications where further improve-

ment is desirable. One way to do this is to both double the

• sampling rate and also the number of transversal stages. For

example , doubling the sampling rate and doubling the number of

transversal stages will cut the ENS error in half. Since it

may not always be possible to double the sampling rate , and

since doubling the required number of stages is not attractive ,

another alternative is desirable. Three different alternative

designs are considered below.
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I n  the f i r s t  m e t h o d , an er r o r sequence c E n T ] is d e l  iiied ~~ ;

the d i f f e r e n c e  between the  des i red  impulse response and t h a t

• a c t u a l l y  generated by the DRDF.  That  i s :

e [nT ] ~ 
h D~

nT ] — h~~[nT ] ( 1 1 )

I f  the error sequence e [n T }  of equat ion 11 could somehow

be approximated , e[nT j and added to the DRDF output , the new

s ignal  h~ [nT1 = h
A
[nT] 4- e[nT] would he a better approximation

to the desired signal . Since e [nT ] is i t se l f  a f i n i t e  d u r a t i o n

sequence , it is possible to app rox ima te  it wi th  a second DRDF

f i l t e r  as shown in Figure 8. These two parallel filters can

share much of the basic DRDF hardware as shown in Figure 9.

No te that the parallel DRDF will have its own scale factor F2
.

In some cases , F
2 
can itself be satisfactorily approximated

by an in tegral power of 2 , however , in general this is not the

case.

Concept ional ly ,  this process of app rox ima ting  the DRDF

error could be con tinued to two , three or more parallel stages.

Of course , at some point it will be more expedient to use a

conventional filter structure.

Figure 10 is a plot of the percentage EMS error vs Km for

the basic DRDF and for one and two parallel stages. This is for

the Chebychev filter used in previous examples. It is seen that

the ENS error is reduced by a factor of about 3 each time a

parall el branch is added . Thus , ENS errors well below 12- of

the peak value of the impulse response are feasible with this

approach.

- ~~ _ — • - -_ - -  ~~~•~~~~- -~~~~-~~ -- - -
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The parallel filter does not approximate the error wave-

form nearly as well as the basic DRDF matches the original

desired impulse response. This is because the error sequence

is quite noise—like with rapid changes. The error waveform for

the Chebychev filter was shown in Figure 5. Except for the

• final sequence values, the error signal is very much like white

noise. The sinusoidal appearance of the final sequence values

is due to the fa ct that the small ri pp le values in the desired

impulse response is being matched by a zero output from the

• D R D F.

It has been found that a consistently better approximation

to the error signal may be made by roughly quantizing the

error signal to integer powers of 2 or zero. Thus, the new

filter shown in Figure 11 would be similar to that of Figure 9,

but without a second integrator. This is the second design

method .

Figure 12 is a plot of the percentage ENS error vs Km for

the basic DRDF and for one and two parallel stages where the

parallel sections are rough quantizations of the error signals

to integer powers of 2 or zero. A comparison with Figure 10

shows that this second approach is clearly better . Similar

improvements for other filters have also been found , and the

results of Figures 10 and 12 may be considered typical.

The third method is aimed directly at the reason why the

basic DRDF error performance does not improve as Km goes beyond

3 or 4. This is because as Km increases , the allowable tap

values are spread further apart. If, however , as Km increased ,

all the integer values were allowable , then clearly the quanti—

zation would improve and result in reduced ENS error. It is

—---— ——••--~-• -- - • _ •
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worth noting at this point that uniform quantizat ion intervals

of any desired value could be achieved with appropriate scalin~~.

This then represents a rough quantization of the transversal

coefficients with the subsequent integration acting to smooth

the overall impulse response.

Because of the speed and cost benef i t s, it is des i rable  to

obta in  integer value taps wi th  s h i f t i n g  and adding r a the r  than

by the  use of hardware mul t i pliers. A d i r ec t  app ioach  would

be to have a parallel  f i l t e r  section for  var ious in teger  values

of 2. In this case, each tap weight would be constructed from

its binary equivalent. For example , for a tap value of 5 (101)

there would be three parallel f i l t e r  sections wi th  connections

made to the f i r s t  and third , but not to the second section .

Each section would have i ts own adder . Figure 13 shows such

a f i l t e r  which is capable of producing tap values 0 to 7, and

with suitable two ’s complement c i r cu i t ry ,  —7 to +7.

A similar approach , but one wi th  f u r t h e r  hardware economies ,

is to permit both positive and negative values of the integer

values of two. Refer to Table I. This shows how the integers

up to 42 could be implemented with just three parallel sections.

The f i r s t  section could have up to five shifts , the second sec-

tion up to three shifts , and the third section a single shift.

Thus , 31 is impl~emented as 32—1 ra ther  than as 16+8+4+2+1 .

The optimum implementation of this concept will be dependent

on the application and device technology. One possible struc-

ture is presented by Kishi et al. [8].

Thus, we have considered a third method of reducing RMS

error that of creating integer value taps. We have also looked
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at several possible imp lementations of the integer tap concept.

A major advantage of the integer tap approach is that separate

scale factors (hardware multipliers) are not required in the

• integer tap approach. A second advantage with this method is

that error performance continues to improve as the number of

shifts is increased. In the basic DRDF and the other parallel

filter approaches, improvement leveled off beyond a Km of 3 or

4 .

Figure 14 compares the performance of the DRD F wi th  the

integer tap approach for the four pole Chebychev f i l t e r . In

the graph at Km = 4 , the basic DRD F is allowing taps values

of 0, +1, ±2, ~~ ±8 
and ±16, while the integer approach is

allowing all the integer values 0, ±1, ±2, ±~ 
. . . . +16.

For this filter, the integer approach surpasses the best re-

sults of the other methods at a maximum integer value of ±138.

Figure 14 compares the performance of the basic DRDF with

the integer tap approach for the four pole Chebychev filter.

The design of the integer taps would proceed in a recur-

sive fashion similar to the basic DRDF design . Tap values a
3

would be selected from the allowable integers 0, ±1, +2 ,

to minimize:

3— 1
Ia . — {h [(j+l)T] — E ak) 1  (12)

k=O

_ _ _ _ _ _  J
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V. TIME DOMAIN ERROR PERF ORMANCE

An important measure of performance will be the ENS er ror

between the desired impulse response sequence hD
LnT ] and the

• actual sequence hA
InT]. In the time domain, the EMS error can

easily be calculated for any filter design from:

1~i h [oT] — h
E = 1 E 

D A ( 13)
T V 0  N

where the subscript T stands for time-domain.

I t  is desirable to be able to estimate what  th is  error  nay

be for  a part icular  f i l t e r  without  going through the actual

design procedure.  In this section , the t ime—domain EMS error

of the integer tap approach is estimated.

The errors measured at the filter output may be assumed to

be uni formly  distr ibuted with zero mean and variance Q
2
/12 [8].

In the case of integer taps Q = 1. Since the mean is zero , the

ENS error will be l/1F2.

In actual practice, the designer would want to know how

the EMS error compared with the peak value of the impulse response

sequence. Therefore, it is desirable to have an estimate of the

peak value of the impulse response sequence. This e s t ima te  can

be made using the following rules .

1. The main lobe of a typical high order low pass f i l t e r  will  • -
•

have a width  that is approximately equal to the reciprocal of

the cutoff frequency.

2. The average slope of the main lobe will be about one half

Its maximum value .
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Th.refore , an estimate of the peak output of a DRDF can

be made given the filter cutoff frequency , fco , the sampling

interval, T, and the maximum integer , Im.

p Im 1 ( 14)2T 2 fco

In Table II , a comparison is made of actual and estimated

RNS errors as a percentage of the peak value of the impulse

response sequence. The percentage es t imates  are obtained by

dividing the RNS es t imates  obtained f rom equa t ion  (13) b y the

• peak value es t imates  from equat ion (14). In all cases , the

estimates represent a conservative bound on the actual error.

The ENS error estimate as a percentage of the peak value (E~)

is thus seen to be:

= (15)
Im 3

Therefore , for a fixed sample rate, the percentage EMS error is

inversely proportional to the maximum integer value , Im.

VI .  FREQUENCY DOMAIN ERROR PERFORMANCE

Since filter performance requirements are often given in

terms of the frequency domain , it is important  to evaluate the

frequency response error performance.

The error sequence e[nT] is defined in equation (11) as

the difference between the desired impulse response and that

actually generated by the filter. In the frequency domain, the

magnitude of the error at any frequency w1 can be obtained by

evaluating the z t ransform of e[nT] at z = e3W i
T
. Therefore,
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the magnitud e response of the error may be w r i t t e n  as:

N-i
E (u )  ~ E(z=eJ~

T
) = —nT

n 0  e [n T ] z  ( 16)

If equation (15) is evaluated for  a set of f r equenc i e s  w ,

WM l ~ 
then we can de f ine  an expression for  the EMS err or

in t~~e f requency  domain.

/ M-l 
(E (wj )~ 

2

Eu 
V ~~~~

—

~~~~

—— ( 1 2 )

We can see from equation (15) that the value of E(ci) and

hence , the value of the ENS error  Ew is a f u n c t i o n  of the  number

• of c o e f f i c i e n t s, N in the FIR f i l t e r  used to gene ra t e  the  i r p u l s e

response. In 1973 , Chan and Rabiner  [9]  showed t h a t  Ew , the RMS

error in the f requency domain is found  f rom :

Eu = V’i
~ ET

here  ET is the t ime domain RN S e r ro r  def ined  in e q u a t i o n  ( 1 3 ) .

Estimates of the frequency domain ENS error can be d e r iv e d

f rom the time domain EMS error estimate by application of

equation (18). Table III is a comparison of the e s t i m a t e d

frequency response errors wi th  the ac tua l  errors  fo r  the Cheby—

chev f i l t e r  previous ly  used .

V I I .  OPERATION EXAMPLES

Spec i f ic  examp les are given in this section of the time and

frequency domain performance of DRDF structures compared with

the ideal time and frequency responses. The marked improvement
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using the in teger f i lter is also shown. Because the performance

is so close to the ideal, especially if an integer f i l t e r  is used ,

only the error (di f ference from ideal) is plotted along with  the

ideal waveforms.

Figur e 15 shows the ideal impulse response for the Cheby—

chev f i l ter  used in previous examp les. Also , plotted with an

expanded amplitude scale are the error waveforms for an integer

f i lter with Im = 16. The improvement gained with the integer

filter is readily apparent by comparing Figure 15 with the basic

DRDF results of Figure 5. There are reductions in both the peak

and RNS errors. This same improvement is mirrored in the fre-

quency domain as seen in Figure 16 which shows the ideal magni-

tude response along with the magnitude errors for the integer

filter. Compare Figure 16 with the results shown in Figure 6.

Figure 17 shows the ideal step response for the same Cheby—

chev f i l ter . Again , t he error waveforms are plotted on the same

time scale and we see the improvement achieved with the use of

the integer f i l ter . The step response also indicates that the

f i l ter  is BIBO stable . Very similar results are obtained with

all other low pass filter designs.

VIII . SUMMAR Y

The s t ructure  and performance of the difference rout ing

digital  f i l te r  (DRDF) has been explored . Design restrictions

and the basic f i l ter  design have been detailed . Examples of

the ENS error performance were given .

Three enhanced DRD F s t ructures  were presented . Each of

these new approaches used parallel f i l t e r  sections. The parallel
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filters could share much of the basic DRDF hardware. The optimum

approach was to use integer value Laps c o n s t r u c t e d  t ron i t h r e e

p a r a l l e l  sect ions . The need f o r  ha rdware  m u l t i p l iers  was avoLlcd

t h r o u g h  the use of s h i f t i n g  and a d d i n g .

Expressions for the ENS error of the integer tap method

were derived . It was shown that tli ’ RMS error is inversely pro—

• pcrtional to the maximum integer used . A low pass four poie

• Chebychev filter was used as an examp le. Similar resu1t~ have

been o b t a i n e d  for  o the r  low pass structures and the results given

in t h i s  paper are typ ical. of what mi ght  he expec ted .
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• 0. 0 15. 16—1 30. 32—2

1. 1 16. 16 31. 32—1

2. 2 17. 16+1 32. 32

3. 2+1 18. 16+2 33. 32+1

4. 4 19. 16+2+1 34. 32+2

5. 4+1 20. 16+4 35. 32+2+1

6. 4+2 21. 16+4+1 36. 32+4

7. 8—1 22 . 16÷4+2 37. 32+4+1

8. 8 23 . 16+8—1 38. 32+4+2

9. 8+1 24.  16+8 39. 32+8— i

10. 8+2 25. 16+8+ 1 40. 32+8

11. 8+2+1 26. 16+8+2 41. 32+8+1

U. 8+4 27. 32—4—1 42. 32+8+2

13. 8+4+1 28. 32—4

14 . 16—2 29. 32—4+1

/
Integer Values with Three Parallel Sections

TABLE I
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Im Estimated Actual

2 2.8 x io
_2 

1.9 x io
_2

4 1.4 x lO
_2 

1.1 ~ lO
_2

8 7.2 x 5.7 x lO~~

16 3.6 x ~~~~ 3.0 x 10~~

32 1.8 x l0~~ 1.5 x lO~~

64 0.9 x lO~~ 0.8 x lO~~

Comparison of Estimated and Actual
Time Domain ENS Errors

for the Integer Tap Filter

TABLE It
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Im Estimated Actual

2 0.396 0.240

4 0.198 0.140

8 0.102 0.065

16 0.051 0.033

32 0.025 0.012

64 0.012 0.007

Comparison of Estimated and Actual
Frequency Domain ENS Errors
for the Integer Tap Filter

TABLE II I
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Appendix B

A DIGITAL FILTER DESIG N PROGRAM

• UTILIZING THE BILINEAR Z TRANSFORM

by

Harriet te  Markos

and

Thomas A. Brubaker

-• Department of Electrical Engineering
Colorado State University

• Fort Collins, CO 80521

ABSTRACT

This report describes the design of digital filters

obtained by the BL.inear—Z transformation of analog f i l ters .

The ideas formulated in this report have been coded into

a computer program which calculates the digital t ransfer

function coefficients. The magnitude function is then

calculated . The Bilinear—Z transform Is applied with the

frequency warping careful ly  accounted for to obtain a

realizable , stable digital  f i l t e r . The dependence on the

sample time is shown in the comparison of the digital and

analog magnitude functions . The phase functIons are not

considered .

This work was supported by Contract #F336 15—75—C— 1138 , Air
Force Avionics Laboratory,  Wrig ht Patterson Air Force Base,
Ohio 45433
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I. INTRODUCTION:

in network analysis the t ransfer  function is a fundamental character-

istic of a system . The transfer function H(s) Is defined by McGillem and

Cooper El J to be the ratio of the Laplace Transforms of the response or

output signals to the excitation or input signals when the initial condi—

• tions are zero. I f  the excitation voltage is represented as v1
(t) and

the response voltage is represented by v (t), then the transfer function

is given by

H ( s )  = 

L[v (t)] V (s) (1)
L [v~ (t)I V1

(s)

This H(s) transfer function is of interest because it describes the

network behavior. For simplicity, i t  will be referred to as the t ransfer

function.

This report and the computer program it describes are concerned with

second order transfer functions

C s  + C s + C
H(s) — 0

2 
1 2 . (2)

D s  + D s + D
o 1 2

These second o rder s t ructures  are fundamental building blocks for  lowpass

filters , highpass filters , bandpass filters , and bandstop filters. For

more information on these structures see Budak [2].

Design of these filters is often done by specifying the magnitude

function H(w). In a filter design procedure the specifications on the

magnitude function are usually concerned with critical frequencies such

-— _ . _—_
~~~~~ ~~~~~~~~ •_ — •~~~~ —- -~ _ ~~~~~~~~~~~~- ~~~~~- -•  - ~~~~~~~~~~~~~ -_ ~~~- -— .
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as 
~Dc’ the f requency at DC; and u.s, the frequency where the response

has decreased by 3db f rom the DC value . For high Q filters, the fre-

quency where the magnitude function peaks is typically specified . This

frequency is referred to as the center frequency, w~. These frequencies

are the critical frequencies under consideration in this report. This

report is written to outline the procedure for use of the Bilinear—Z

- transform as applied to second order filters. The BLZ program is a

computer program to perform the procedure outlined in the report.

The program accepts a second order function in s. Before apply-

ing the extended Bilinear—Z transform, the critical frequencies must

be prewarped as explained in Rabiner and Gold [3]. Then, the extended

Bilinear—Z transform described as

(3)
- 

T Z+l

is implemented and the equivalent discrete time transfer function in Z

is obtained :

A Z2 + A Z + A
11(Z) — o 1 2 . (4)

— 

Z2 + B 1Z + B 2

j  ~TThe magnitude—squared function for (4) is obtained by setting Z — e

and taking the sum of the squares of the real and imaginary parts.  In

the design program , plots of both the analog and digital filter mag—

nitude functions are available for presentation on a display screen.

The program recognizes real or complex poles as well as real or

complex zeros. When equation (2) contaIns both zeros and poles , the

program will consider two cascaded sections, one of zeros and one of

poles

_ _  • • - -
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2D C s  + C s + C  C
H ( s )  — 

2 
D2 D s 2 

+ D
1
s + D2 

K HZRO(s) H~0~~
(s)

(5)

where the cascaded sections may be considered as

c ~
2 + C s + Co 1 2 (5a)

HZRO (s) =

C2 (Sb )
and HPOL(s) 

= 
2D s  + D s + Do 1 2

The program is developed with specific consideration for second order ,

lowpass filters. However , any second order realizable struc ture can be

processed . The program will proceed as described with consideration of the

three critical frequencies : DC frequency w~~, —3db frequency w 3
, and center

frequency w .  Proper operation of the program requires the filters to

have an w or an w in order to calculate the discrete time transfer3 c

function (4), with the magnitudes at the critical frequencies preserved .

The magnitudes at any other frequency may not correspond due to the frequency

warping.

II. DEVELOPMENT:

A. BILINEAR-Z TRANSFORM

The extended Bilinear—Z transformation is descr ibed in Rabiner and

Gold [3] and McGillem and Cooper [4] as a mapping from the s—plan e to the

Z—p lane with the following properties : the sju axis is mapped onto the

unit circle of the Z—plane ; the left half of the s—plane (s<o) is mapped

to t h e  Interior oh tht~ unit c i r cl e  in the Z—plane ; and the r i g ht ha lf of

th~ s—plane (s>o) is mapped to the exterior of the unit circle in the

Z—p lane. Thus , the analog transfer function H(s) given by (2) is trans-

formed by (3) to the corresponding digital tr ans fe r f unct ion 11(Z) given 

— — • —-_ -— __________
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by (4). The digital t ransfer  function 11(Z), evaluated at Z_eJWT , ~~

• periodic in w with period u~~ , as explained in McGillem and Cooper [4].

The extended Bilinear—Z transform is given as

(3)
- 
T Z+l

and is applied by direct substitution for s. When the ju axis is mapped

onto the unit circle in the Z—plane , there is a nonlinear relationship

between the analog frequency w and the corresponding digital frequency ~2.

Rabiner and Gold [3] illustrate this nonlinearity as follows:

Using equation (3) let s=jw and Z_e j
~

T 
~~

jf~T2 e —1 ,
- 

T

then multiplying numerator and denominator of the right side by e~~~~
”2

2 e3~
Thl2_e jG’

~
’2

= 
‘r ej QT h’2+e_JOT /’2

Recalling the exponential relations from Euler ’s equation

2 . TAN~~T

2 TAN~~T .  (6)
and so w = —  —

The refo r e , the analog frequency ~ is mapped to the digital frequency ~

by the relationship given in equation (6). When it is desirable to have

the discrete transfer function possess the same magnitude as the analog

t ran sfer function at a particular frequency U$
D I the analog frequency

niu~.t  h .  p r ew arpet l  or a lt e r e d  so tha t  when the Bilinear— Z transformation

i~ p er l o rme d  this  prewarped f requency  0

* 

will map into the desired

~~~~~~~ -—~~~~~~~~~~ - -  ~~~~~~~ - -  - - -  - - - -  - -- • 
~~~~~~~~~

— - -—
~~~
—-. 

~~~~~~~~~
- - .

~~~~~~~~~

- - - _ _
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digital frequency w
0
. The is determined by

• 2 TAN
W
D
T 

. (7)
W A T  2

The relationship of this o..1~ to the coefficients of (4) is determined

and the prewarped coefficients for (4) are evaluated using the prewarped

value for 0
A • The process is described in more detail in the following

sect ions.

B. COMPLEX CONJUGATE ROOTS

A second order structure with complex conjugate roots is considered

as

M s 2 + + 142 = (s-r
1
)(s—r 2) (8)

where the leading coeff icient  of is normalized to 1 by dividing through

by I f .  The roots are complex conjugates

r
1

= c i + j B  (9a)

r2 
= a — ji3 . (9b)

Equation (8) may also be considered as

(s+a)
2
+~~

2
= s

2 +~~~~s + w
2 (10)

where w
o \ J i~

‘4
0 .0

and ° 
.

In equation (10), w represents the distance from the origin to the location

of th e roots , and Q indicates the slopes of the radial lines that connect
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the root locations to the origin.  For cz< < 8, Q>>l .

-j 

- — —. —

~~~~~~~

Figure 1.

cz ,~~,u , Q are related as follows :

0
0

B = ~~~\j ~~~~~~~
2

2ct

A p lot of the magnitude function 11(w) for complex conjugate poles

reveals a peaking e f fec t  with the maximum value at the center frequency,

This is covered extensively by Budak [5]. The amount of peaking is

indicated by Q, where Q may be considered as a measure of the ratio

~eak magnitude . When Q is greater than five the peak viii become prom—DC magnitude

inent so that the center frequency w
~ 

may become more important than

the —3db frequency 0
3~ 

These high Q b ypass filters actually have a

band pass type structure. Therefore , it is important to preserve the

appropriate cri tical frequency. The program utilizes a user input limit-

ing value , Q— limit. If Q is less than or equa l to Q—liinit , the —3db

frequency 0
3 

is prewarped . But if Q is greater than Q—iimit , the center

frequency 0
3 
is prewarped .
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1. Complex Conjugate Poles

Recall ing equations (2), ( Sb ) ,  and (10) the transfer function with

comp lex conjugate poles can be considered as

H ( s )  = c2[_~~~~~
1 

+ DJ= 
c
2[5

2 
+ 

~~l

5 + ~~ 2] 
(11)

when th e c o e f f i c i en t  has been normalized to 1 by dividing through

by I)
- 0

• To prewarp the —3db f req uency , the first step is to calculate

A t o the magnitude has decreased by a factor of from its DC
3 3

value so

______ 
= IH(s jo3)l

or using the latter form of (11) and squaring both sides

= 
C 2

2

4 2_ 2 2  /

2- . (w 03 
) + 

~~~~~~~
o

Expanding and simplifying:

W
3~ 

- 20021 03
To solve for 03. app ly the quadratic formula employing the positive root

03
2 = ~~(2~~~2 

- 

2 

+4~~
2 

- ~~
2 +4W 4

and recognizing that ~~
2 

= D2

~~~ 2 (2 - + ,‘(2 ~~~~~~ 
. (12)
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At this time the digital 0
3 

f r equency can be prewarped by equation (6)

to obtain the prewarped analog —3db frequency w where

2 TAN W
3
T

W
3~~~ j 2

Now utilizing equation (11) and w~ , the prewarped coefficients for

H(s )  can be evaluated . Recognizing f i rs t  that

D ~~
2 (13)

2 o

D 
_~~_~~i (14)

1 Q  
— Q

then using (12)

— 

2(0 3
) (15)

D2 
- 

(2 - 
2~ 

+ 1(2 - 2~ 
+ ~~

Q Q

D~ f~ (16)
Q

and

D = l .  (17)

C2 C2 18
To evaluate C~~. note the DC gain at H(s 0) ~~~ — —2 o

Since it is critical to retain the DC gain , C~ is evaluated to be

C~~~— D C ~~~~D~ . (19)

The prewarped coefficients determined by (15), (16), (17), and (19)

now form a new transfer function H’(s) which when transformed by the

Bili near—Z transformation will exactly match in magnitude the original

transfer function H(s) at the critical frequencies wD~
, and 03.

L~~~ .. ~~~~~~~~~~~~~~
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Instead of prewarping 0
3~ 

the center frequency w~ could be prewarped .

Again , it is f i rst necessary to locate 0
c~ 

Recall in g that is the

center frequency of the peaking e f f ec t , d i f ferent ia l  calculus is used

to f i nd the location of this  extreina . Taking the derivative with respect

to w of the magnitude—squa red funct ion  for (11)

r 2
d d 

_______ 

C2
d1i
~
[iH (w w

~
)I2 1 ~‘dw (u 2 0 2)2 + (

000c)
L°

Setting the derivative equal to zero will yield the location

_C
2
2 t2 (uiø

2_w
c
2)(_2w ~

) + 2(000c)(Oo)]
~ = 0

+ (w
~
w
~
)2]2

simplifying

or 

2( w~
2_w

~
2)(_2u~) + 2(

000
CX

w
o) 0

4w - 4w ~~ 
2 

+ 2w
C C o  c— 0

Q

but 0 ~O so

—

2

and finally

2 
(20)

Note , in (20) for  Q grea t e r  than 10, w
~ 

is very nearly w
~~.
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Now , employing equation (6) the prewarped analog center frequency

o is obtained :c

The prewarped coefficients are found from (13), (14), (17), (19),

and (20) to be:

D~ = ~~2 = [i _
~
j (21)

D~ 
~~~~~~~~~~~~~ (16)

D 1 (17)

C~~=DC~~~D~ (19)

As in the case of prewarping W3~ these prevarped coefficients

determine a new transfer function H’(s) which when transformed by the

Bilinear—Z transformation will exactly match in magnitude the original

transfer function H(s) at the critical frequencies WDC, and w

Exa~p~~~ 1:

Consider H(s) 
2 , where Q 10.

S + 0.ls + 1

Using a sample time of T 1.0 ,

o — 0.997497 and w = 1.551026.c 3

The dig ital transfer function coefficients can be obtained on print out

during execution of the BLZ program .

• - •— “ .- --~~~~
——•--— 

~~
- - - • ,- • - - •- 

~~~
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~~~~~~~~~~~~~~~~~~
-- • • •
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Figures 2 and 3 are plots of the analog and digital magnitude

functions with 0
3 
prewarped and w prewarped , respectively . In both

cases, a sample time of 1.0 second was used . The sample time affects

the 11(Z) magnitude funct ion : For small T values (less than 0.1

second) the two magnitude funct ions  are nearly the same for all o

va lues. As the samp le time increases, the two magnitude functions

beg in to differ from each other for all w values except the critical

frequencies. The sample time of 1.0 second shows this variation

clearly. Values of T greater than 1.0 second start to show larger

differences to the point that distortion causes the two magnitude

functions to differ in an unacceptable manner.

2. Complex Conjugate Zeros

Recalling equations (2), (Sa), and (10) the transfer function

with complex conjugate zeros can be considered as
0

r s~~÷ c s + C 1  fs’+— ~~s + w
’11 2~_

~~~~I 0 1
~ D2[ 1 J D 2 L 1 J

where the s
2 
coefficient is ,rtnalized to 1 by division ~hroughout by

C .
0

Considerations for the —3db frequency 0
3 
and the center frequency

follow immediately from the development for complex conjugate pOle8

and are not reiterated here. The ef fec t  of Q in this case is to cause

a dip in the magnitude function and the w~ is found by locating a min-

imum rather than a maximum .

The prevarped coefficients for H(s) are found as follows :

I. Prewarped 0
3 

_ _ _ _ _ _ _ _ _ _ _ _

~ 
[2 

— 

~~ 
+ ~~ ~~~ +4] (22)

2 TAN O 3T
03 T  2



r
- 

2(0
3
) (23)

C2 1  1~~~~~
i2) 2 + 4

:: :‘ ::::
(26)

- I I .  Prewarped

°c 
= ~~~~~~ 2Q2 

(27)

- 2 TAN W
c
T

°c i

= ~~2 
w~ 1~ 

(28)

(1 - 
~Q

2)
J

CI (24)

C~~= 1 (25)

26)
2 D C

In both cases the prevarped coefficients form a new transfer function

H (s) which when transformed by the Bilinear—Z transformation will exactly

match the original transfer function H(s) at the critical frequencies

o , and o in case I; or w and w in case II.
DC 3 DC c

C. REAL ROOTS

A second order struc ture with real roots is considered as

M s 2 
+ M

1
s + 

~2 
— (s—r

1
)(s—r 2

) (27)

_ _  

—— - -— - - •  - - ~ . - - -
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where the roots are evaluated by application of the Quadratic formula

= 
~~~ 

÷J~~2 — 4MM
2 

(28)

• 214
0

r2 
= H1 — 4 M M 2 (29)

When complex conj ugate roots are under consideration it is first

necessary to locate the critical 03 or w~ 
frequencies. In the real

root case this is not necessary . If each root is prewarped and the

prewarped H(s) coefficients determined from the prewarped roots , the

new transfer function H (s) will yield an H(z) after the Bilinear—Z

transform which matches in magnitude the original H(s) at the DC

• frequency °DC and at one other frequency dependent on the sample time

T used . The technique is to factor the filter coefficients to locate

the roots. Then each root is prewarped and the sections multiplied

together before applying the Silinear—Z transform.

The roots are found by equations (28) and (29). Then using equation

(6), the prewarped roots are

- Z TAN r
1
T

~~~~~ (30)

~~~~~~~~~~~~~ 
. (31)

2 T 2

Then the prewarped coefficients are found by (27), (28), and (29)

to be

M = l  (32)

— — (r1 
+ r

2
) (33)

_ _ _ _ _ _ _ _ _ _ _  

-~~~~~~~~~~~~~~~~~~ - - ~~~~•~~~~~•
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= r
1
r
2 

. 
(34)

I f  = 0 there is only one real root

-

~~~ r~~~~~
2 (35)

2 TAN rT
Then r

and so

(36)

1 4 1 = 1  (37)

M~ = — r (38)

A special case arises when M2 0 and M — 0 , or when = 0 and

= 0 , causing two roots at zero , or one root at zero , respectively .

In both cases TAN (0) = 0 indicating a linear relationship, hence , no

prewarping is required .

1. Real Poles

Referring to equations (2) and (5) the transfer functions wi th

real poles can be considered as

H ( s)  = 
2 1 (39)

[D s + D s + D  Jo 1 2

where

D ~~~~~~~~o o

D f-9+12

in the previous development.
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The roots (poles) and prewarped coefficients can be evaluated as

described before with C~ being determined from

C2DC = —

hence

C = D C  . (40)

2. Real Zeros

Referring to equations (2) and (5) the transfer function with real

zeros can be considered as:

H(s )  = ~~~[Cs
2 

+ C1s + C2 ]

where

C ÷-+Mo o

C

C
2~
—.M

2

in the previous development.

The roots (zeros) and prewarped coefficients can be evaluated as
C-

described with D~ def ined by (40) to be D~ — . (41)

Example 2:

Consider

50
L 

+ l5s + 50

w i t h  poles at 5.0 and 10.0.

Figure 4 is a plot of the analog and digital magnitude functions for

t h i s  b ypass , real pole f i l ter  using two sample t imes. For the sample

_ _ _ _ _  

~~-- ---- •“---
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t ime of 0.3 sec . ,  the analog and digital  magnitude functions agree

exactly at °DC’ and at an intermediate frequency wi.. However , for

the sample t ime of 0.2 sec., the analog and digital magnitude functions

agree at °DC’ and at a frequency 02 di f fe ren t  from 0l~ 
When evaluating

real root structures , the sample time has a direct effect on the

critical frequency value because the roots are prewarped, not the

critical frequency. Note that for first order sections prewarping

the root is equivalent to prewarping the —3db frequency. For the

first order sections in cascade the net —3db frequency will not match

because it was not prewarped .

D. 11(Z) TRANSFER FUNCTION

After the prewarping is accomplished , the digital transfer function

is evaluated . The transformation is made by direct substitution of (3)

into the transfer function of prewarped coefficients giving

- 

~~~~~~~~~ 

_ _ _ _ _ _  _ _ _ _H ( Z )  - H (s - T ~~~~~~~~~ 

- 

D F ~ ~~~~
2 

+ D1[~~~~~
+ D~° LT~~~ LT~~

Multiply ing numerator and denominator by [T(Z+1)1
2

C~ I2(Z—1fl
2 + Cj [ 2 ( Z — l ) ] E T ( Z + l f l  + C~ [T(z+l)]

2

H(Z) 

~i c  i7+~~ iT~Tz-i)][T(z+1n + D~ fT(Z+l)]
2

Expanding , and then collecting terms

11(Z) = 
[4C~ + 2TC~ + T

2
C~ ]Z

2 
+ [2T 2

C~ — 8c ]Z + [4c~ — 2TCI + T
2
C~ J (4 1)

[4D + 2TD~ + T2D~ IZ
2 

+ [2T 2
D~ — 8D~]Z + [4D~ — 2TD~ + T

2
D~~

Recalling equation (4)

AØZ
2 

+ A1z + A2 (4)
H(Z)

Z + B Z + 8
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where

DEN 4D + 2TD + T2Do 1 2

and

A = [4C + 2TC + T2C ]/DEN
0 0 1 2

A = [2T2C — 8C ’]/DEN1 2 o

A2 
= [4C — 2TCI + T 2C~~] /DEN

B1 
= [2T2D~ — 8D ’]/DEN

B2 
= [4D — 2TD~ + T2D~ )/DE N .

E. CALCULATION OF MAGNITUDE FUNCTIONS

1. Analog Transfer Function H(s)

The magnitude function for the analog transfer function is obtained

by setting sjw in (2) and finding the square root of the sum of the

squares of the imaginary and real parts~

C (10)
2 + C1 (Jo) +

H (w) — H(s jw)I = 2D0 (J o) + D
1 

(J o)  +

and since j — [i

(C
2—C 

w)~~ + j(C
1
w)

H ( w ) 0
2(D

2-Dw 
) + j(D

1
w)

Then the magnitude of a quotient is the quotient of the magnitudes

H (w) 
+ (c10)

:

(D 2 —D w ) + (D1w)

or equivalently

H (w) fRC 2 — c w 2 )~~+ (C
1
w)2 

(42)

\I (I)2_I) 02)2 + ( f l ) 2

2. Digital Transfer Function H(Z)

The magnitude function for the digital transfer function requires

special consideration of the original analog transfer function. If H(s) 

-—~~~ -— —- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-c— - ——  ~~~- -— 

_ i__
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is composed of one section of either poles or zeros, the digital magnitude

function is found using the prewarped H (s) transfer function. But, if

H(s) is composed of two sections in cascade as in equation (5), there are

two transfer functions to be considered : the transfer function of pre—

warped coefficients for the pole section, 
~~~~~~~ 

and the transfer

function of prewarped coefficients for the zero section, H
~R0

(s). The

resultant total transfer function is the product H OL (s) . 
HERo(s).

The technique used here is to transform each section to obtain the digital

transfer function in cascades HPOL (Z) and H
~~o

(Z) , then evaluate the

di gital magnitude functions f or each section, and the resultant total

digital magnitude function is the product hlPoL(0) HZRO (w). In both

cases the general technique to obtain the magnitude function H(w) from

joTa digital transfer function H(Z) is to let Z — e , apply Euler s

formula , and find the square root of the sum of the squares of the

imaginary and real parts

A ej 2WT + A  ejW T + A
j oT 0 1 2 .H (w) H(Z e ) =z ej 2wT + B1 ej oT + B2

Recalling Euler ’s formula

j oTe = cog oT + j sin oT

and combining real and imaginary parts yields

[A cos 2oT + A1cos oT + A2] + J E A  sin 2wT + A1sin wT]

cos 2wT + B
1cos oT + B2 ] + j [  sin 2oT + B1sin oT]

and since the quotient of the magnitudes is the magnitude of the quotients

H (w) 
(A cos 2wT + A1cos oT + A 2 ]2 + [A sin 2wT + A1sin oT] 2

+ B1cos oT + B2 ] 2 + [ sin 2oT + B1sin uT] 2

(43)

In the cage of the analog transfer function being composed of two

sections in cascade , the  resu l tan t  total digital  ma gnitude function is
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found as the product of the magnitude functions of each section. This

multiplication effectively destroys the correspondence of the critical

3db or center frequencies for each section, resulting instead in a new

cr i t ical  frequency.  Only if the critical frequency of prewarping is

identical in both sections will the resultant critical frequency be the

same . However , if critical frequencies for the total transfer function

ar e prewarped , such as in Butt erwor th filter design, then the individual

sections are not treated separately in terms of prewarping. This allows

the critical frequencies to be handled directly from input to output.

This form of design has been treated in two separate reports now being

revised. These are “A Fortran IV Design Program for Butterworth and

Chebychev Band—Pass and Band—Stop Digital Filters”, and “A Fortran IV

Design Program for Low Pass Butterworth and Chebychev Digital Filters”.

The revisions will be completed in early August, 1976.

III. OPERATION OF THE PROGRAM

The principles developed so far are utilized in the BLZ program.

Written in DEC Fortran IV , this program accepts a second order analog

transfer [unction , performs the necessary prewarping to match critical

frequencies, implements a Bilinear Z transform, and determines the

digital transfer function by the methods explained in section II.

A. INITIALIZATION

The operation of the BLZ program assumes a high degree of user

interaction via an external teletype or keyboard device. The user is

asked to supply, through input, the following initialization factors:

1. The program will request input specifying real poles or

complex poles, real zeros or complex zeros. Input is in

the form of 1 for yes and 0 for no. As the program

receives each response a flag is set to each affirmative

_ _  ~~ •~~~~~~~~~~~~ ~~~• •~~~ ~~ • •~~~~ • • • • • • • • •~~~••



reply. If flags are set for both zero and pole sections

a special flag is set to indicate two sections in cascade.

2. The program will request the range of o values the mag-

nitude functions are to be plotted over. A minimum w

and a maximum w are input in 213 format. This option

facilitates the opportunity 61 investigating any specific

region of the magnitude function.

3. The program will then request the total number of points

to be plotted. Input is in 13 format, however, only

values up to 500 are allowed under the current dimension

al]otments. If more than 500 points are desired , the

dimension statement for the arrays used must be altered

to a value greater than or equal to the total number of

points plus two.

4. The program will request a sample time T in seconds and

the coefficients of the analog transfer function H(s).

As stated before:

C s 2 + C s + C

2 
2 . (2)

D s + D s + Do 1 2

The format statement here allows values up to F9.5. The

leading coefficients need not be normalized to 1.

NOTE: All input values must be presented in the format specified or

with decimal points and commas included in all relevant positions.

B. EXECUTION

After the initialization factors are received, the program proceeds

to calculate the analog magnitude function defined by equation (42).

• A
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The user may have the computer output the DC value before responding to

a request to display a plot of H5
(o) versus u to be generated on a

display screen. The IDIOT subroutine is called for this purpose, and

is included in the program package as explained under the section on

software.

The program control now advances into the transformational section

of its operation. If the special flag to indicate two sections in

cascade is set, the program will evaluate a magnitude function RPOL(w)

for the pole section, then a magnitude function HZRO(w) for the zero

section. The resultant total digital magnitude function Hz(o) is the

product of 
~
‘pOL~°~ 

and HZRO(u). If the special flag is not set, the

program checks first for the pole flags and then for zero flags. In

all cases, when a set flag is encountered , the control branches to the

appropriate subroutine for the set flag. The subroutines serve to

evaluate the prewarped analog transfer function coefficients as described

in section II. In the case of complex conjugate poles or complex con-

jugate zeros, the user is requested to input a limit value for Q to

determine prevarping of 03 or In all cases, the user will have the

option to print out such information as the —3db frequency, the center

frequency , or the prewarped roots.

As each prewarping subroutine is completed, control returns to the

ma in program. The Bilinear—Z transform is executed as described and the

digital transfer function is obtained . The magnitude function defined

1:, (43) is evaluated for the u range indicated by the initialization.

A plot of this magnitude function is available, and if the user so

indicates, the digital magnitude function will then be superimposed on

the plot of the analog transfer function. If the user so desires the

program will now output the minimum and maximum values of the magnitude 

~~~~~~~~~~~~~~~
- -

~~~~~~~~~~~-- ---- •~~~~~~~~~~~ -- •~~~~~~~~~~~~~~~~ - - - -
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function.

At this time the user is afforded the option to alter the sample

time T . If he responds affirmatively, the program requests a new T

value to be input .  The control then branches to inquire if the user

desires to replot the analog magni tude function . If the user responds

negatively, the present display screen contents are retained and the

next plot will be superimposed with these same plots. If the user

responds affirmatively , the screen is cleared and the analog magnitude

function is displayed and the program proceeds as before.

In the case of two sections in cascade the program evaluates for

each section , then offers a plot of the resultant total digital magnitude

function . The options for the minimum and maximum magnitude values and

a new sample t ime T are offered as described before.

When the user is satisfied with the sample time used and rejects the

option to alter T, the program continues with an offer to printout the

table of values of the magnitude functions over the range of o values.

At this point , in the case of two sections in cascade, the user is

offered the opportunity to display plots of the magnitudes of each section

individually.

Two more printout options are available at this time: the prevarped

normalized analog transfer function coefficients; and the digital transfer

function coefficients. The final option is to run the program over again.

An affirmative response directs control to the initialization portion of

the program , while a negative response terminates the program.

C. HARDWARE

The BLZ program is wri t ten in DOS Fortran version 9.02. It was

developed on a PDP—l l/2 0 with a DOS/BATCH operating system. The function
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plots were obtained us ing a GT4O graphics display terminal, with hardcopy

plots available on a Houston Instruments Plotter interfaced to the GT4O.

All printed results were available using a Centronics line printer. The

program is wri t ten  to be easily modified for use with systems of similar

configu ration .

D. SOFTWARE

Operation of the BLZ program requires considerable user interaction

for data input. The program writes instructions and questions to unit 6.

The user responds with the appropriate data which is read from unit 4.

These two units must be assigned to appropriate output and input devices

at run time. Additional output is available to unit 5, which must also

be assigned to a device at run time. The program was written and tested

with units 4 and 6 assigned to a teletype keyboard and unit 5 assigned

to a line printer. A sample run using these devices is provided in figure 5.

The BLZ program is composed of a main block with four subroutines to

perform the prevarping:

RZRO
RPOL
CZRO
CPOL

and a subfunction TAN to calculate the trigonometric function tangent.

The program also calls the following routines from library files:

FLOAT IDIOT
SQRT RANGE
ABS
COS
SIN

The rout ines on the l e f t  are called from the DOS/BATCH FTNLIB. The

routines on the righ t are required for plotting. They are called from the

PLTLIB file and are included in the program package . 

- ---- - -  ----~~~~~~~~~ •--~~~~-—-~~~—---- --- --- • _ _
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The IDIOT subroutine was written for plotting applications on the GT4O

graphics display terminal. Any subroutines required by IDIOT are included

in PLTLIB, along with the CT40 plotting routine (PDP—ll assembly language

MACRO). Explanation and documentation of the use of IDIOT can be obtained

by l isting the program. All of the required plotting software for the GT4O

has been included with the program package, or the user may incorporate his

own plotting routines.

Recommended set up procedures for tise of the BLZ program are as follows :

1. Compile BLZ program. This assures system compatibility.

2. Comp ile PLTLIB.SRC .

3. Assemble SENDGT. This is the plotting routine to run the
GT4O.

4. Build the subroutine library PLTLIB.OBJ including

1. PLTLIB.OBJ
2. SENDGT.OBJ

in that order .

5. Assemble and link PLOTCT.MAC for latter use in GT4O plotting.

6. Link together BLZ, PLTLIB , FTNLIB.

7. Load PLOTGT.LDA into GT4O and start it running.

8. Run BLZ (any changes on I/O devices may be made now by assign-
ment statements for the devices 4, 5, and 6 as explained
previously.) 

~~~~~ • • • • •••• •• •• • •~~••~• • • • • • • • • • • • • • • • •• . -
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INTRODUCTION

This report describes how to use two programs for the weighted

least squares design of nonrecursive and recursive digital filters.

First the theoretical aspects are considered and the deMi gn equat1oni~

are developed . The signal mode l in this work Is a&~sutwd to he .i

polynomial because the state model Is simple. However, the theory i~i

easily extended to include any signal model represented by a linear

differential equation.

Then the operation of the two programs is described along with

examples to illustrate their operation . 

---.~~~~~ - -~ -‘--~~~~ ---———- •—---• - - -  -
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LEAST SQUARES DESIGN OF NON RECURS IVE DIGITAL FILTERS

The design of nonrecursive and recursive digital filters using

weighted least squares is based on a model for the input signal.

The most common mode Is t hat  a re eta  r rent 1 y in usc~ ;f l t• d lit er t m t  I t

equations . The subsequent representation of the differ ential equa-

• I t ion by a f i rs t—order  vector differential equation leads to the

• concept of a state variable and the state space representation for

a system. By use of the proper formulat ion , a continuous si gnal

represented by a d i f f e ren t i a l  equation can be described by a f i rs t—

order vector difference equation or a discrete t ime state space

model. References that describe the essential aspects of state

variables are by De Russo, Roy and Close [1] and Chen [2J .

Since signals from laboratory Instruments are not usually des-

cribed by a differ ential equation . approximatio ns olte n tt t il 17.e ;I

polynomial . For this reason , the vector form of a polynomial approx-

itnatlon will be used in this report. The reader should be aware

that this can be generalized to include any signal model that can be

represented as a linear time—varying differential equation . Later

in the paper a scalar model representing a Gaussian time signal

will also be utilized to develop a time—varying filter that can be

used for reducing the base—line error and for the initial separation

of signal components.

To develop the polynomial model let the signal z(t) be repre-

sented by a polynomial of order m. At the time t nT the state

vector for the signal Is given by 

~~~~~~ ~~~~~~
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z

z(nT) (1)

In •• D z  tnl

Redefining the state vector as — —

Tz

x (nT )  
~~ ~-j Z ( 2 )

‘~~_~~nmzin! tenT

the use of a Taylor series representation for each element of x(nT)

now permits the state of system at t”(n+h)T to be described in terms

of the state at tnT by the relationship

x[(n f h)T1 •Ihlx[nT I (3)

where cD[h] is the mxiii state transition matrix with elements

— i~’(ti) ’ 
h~~

t O<I <m (4)

i<J<in

= 0

The state transition matrix 41 (hJ satisfies all of the relationships

for general state transition matrices with the important two being for

this work

= [~~(h) ]~~ 
(5)
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and

~[m] • ( p I  ~I m + p J  (6)

At this point , these models can he utili zed in the design process.

Desig~~of_Nonrecursive_ Filters

Let the input signal start at time t 0  and assume that the signal

over a finite data window is approximated by a polynomial z(t).

Defining the state of the signal by (2), then the state of the signal

at time t=(n+h)T is given in terms of the signal at time t=nT by (3).

Given that the signal starts at tWO , the first I observations

are each defined as

un[JTJ = Ntx[jTj + v [ITJ j=O ,l ,2,. ..9— l (7)

where M is a row matrix that relates the measurable state variables

to the actual measurements. The elements of each noise vector v[jTJ

are the measurement noises. Zn general these are taken as random

variables with zero mean and the time dependent autocovariance matrix

R[JT] = E [v (j T ) v t ( jT) J (8)

However, in mos t laboratory systems only the data is available and

the derivatives are not measurable. Furthermore , the noise covariance

matrix is usually not known and for scalar measurements the noise

variance is assumed constant and the noise samples uncorrelated. For

the remainder of this paper , only scalar measurements and uncorrelated

measurement noise with time—invariant statistics will be assumed . The

mean value of the noise will be taken as zero and the variance as ~
2.

The results are easily extended to vector measurements and to measure-

ment noise with time varying statistics.
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For i observations , the total observation vector at t—nT is

de f ined as

m inT I

• m l  (n — I ) i i
nn
~

[nT J — - 
• 

(9)

M [ (n— l+ 1)T] .
I

This vector now forms a data window of I. data points. For an estimate

of the data at t=nT the use of the expression

x [(n—j)TI = 4(—j ) x[nTJ (10)

is combined with (9) to yield
1

• M~ ( — l )
x (nTJ + v E nT ] ( 11)

M~ [—~+lJ

The matrix of constants HEnT ] is now defined as

M~ (— l)
HEnT I = (12)

M~[~-f+l ]

so that (11) can be written as

~~ [nT J = H[nT l x [nT J + ~~ [nT ] (13)

The elements in H [nT ] are constants given by

Hij  = (—i)~ O~i<i (14)

O <j < q

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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where L is the size of the data window and q is the order of the

polynomial plus one. When i~’j”O the value of (14) is one. Note that

since (12) is a matrix of constants there is no need to make the

matrix a function of t ime . However , in the derivation for  the recur-

sive filters this provides a method for separating different H matrices.

• The optimal estimate of the data at t=nT is now given in terms

of weighted least squares or minimum variance because this form is

utilized in-the derivation of the recursive filters. If the covari—

ance matrix for the total observation vector is

R
~

(nT) = E [ v
~ 
(nT) y~ (nT) ] (15)

the optimal minimum variance estimate is

~[nT ] = W [nT] m
~

[nT] (16)

where WEnT) is a series of constant weights given by

~ [nT ] [H
t (nT) [R~ (nT) r 1H( nT )] 

_ l
H t (n T ) L R t (n T) ] _ l 

( 17)

For uncorrelated noise with constant variance ~
2 (15) is a diagonal

matrix with elements c2 and (17) reduces to

WEnT] = [Ht (nt) H(nt)] 1 Ht(nT) (18)

This is the same result obtained using conventiona l least squares when

the noise covariance is a diagonal matrix of equal constants. The

reader should be aware that the estimAte vector Is .an estimate of the

data and all of the derivatives In the model. h owever , all of the

weights in the derivative terms must be scaled by the scale factors in

the state vector defined by (2).
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• The covariance matrix for the estimate given by (16) is given by

S(nT) = W (nT) R
~
(nT) Wt (nT) (19)

Substituting (17) into (19) nov yields

S (nT) = [H t (nT) [ R
~ (nTfl ’ H (n T ) ] 1 (20)

which simplifies fur ther  to

S( nT) [i~I t (nT) H( nT ) 1~~ 
2 ( 21)

• fo r the uncorrelated noise.

By defining a delay or prediction factor a , est imates  of the da ta

ciT uni ts  behind or ahead of the po int t n T  can be done . To do th i s

the total observation vector is written as

in (nT) = II (nT) x[(n—ci)T] + v (nT) (22)
t a -t

where H (nT) now takes the form

M4(—ci—l)

H (nT) = 

: 

( 23)

The indiv idual elemen ts of the matrix now become

H ( nT) 1~ = ( a—i) 3 0<1<9. (24)

0<j < q

The fo rm for the optimal e s t ima te  now utilizes H
~
(nT) in (18). The

cova r iance of the estimate uses U (nT) in (21).
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Example

For a five—point window with c i O , the optima l weight matrix and

the covariance matrix for the estimate are shown in Table 1 for  a

third—order ~~lynomial fit . For cv’2, the estimate of the data in

the middle of the window is obtained and weight matrix and covariance

matrices are shown in Table 2. This case corresponds to weights

given in reference [3].

In practice, the design of nonrecursive filters is initiated by

specifying the size of the window which is the number of rows in the

H matrix, the order of the polynomial approximation which is one less

than the number of columns in the H matrix and a which determines

the coefficient values in the H matrix. This makes the design suit-

able for use with interactive graphics since only three parameters

need be specified to generate the weight and covarlance matrices.

If the model of the signal process is modified by additive

uncorrelated driving noise, the variance terms of the driving noise

fade the memory so that past data has less effect on the estimate.

This can be thought of as uncertainty in the signal model. The con-

cept is particularly important in recursive filter design . For non—

recursive filters, it can also be utilized and can be useful when

using a non—recursive filter to initialize a recursive filter.

If the model includes driving noise, the state at time tnT is

given by

x[nT] = I’ [— ll x [(n—l)Tj + w [(n—l)TJ (?S)

where w[(n—l)T] is a sample from a noise process with meaia zero m d

covariance matrix Q. This noise process is assumed to be w h i t e .  In

j J
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terms of the total measurement vector , rn
~
[nT] now becomes

~~ [nT ] = H[nT] x[nT] + ~~ ( nT) + ~~ [ nT J (26)

where 2t[nT ] is the total noise vector due to the dr iv ing  noise . For

scalar measurements this is given by

I

0

—ftI ’[—l ] w [ ( n — 1 ) T j

~~[nT1 = -M~ [-2J w[(n-l)TJ - M~ [-iJ w [(n-2)TJ (27)

The tota l noise vector that corrupts  the tota l  measurement vector is

now def ined as

£~~
[nT ] 1- v~ [nT] (28)

For scalar measurements the covariance matrix for r
~
[nT] has diagonal

elements whose value increases down the diagonal. Since the diagonal

elemen ts are not the same , the minimum variance expressions of (16) and

(17) must be employed to f ind optimal linear estimates .

Example

To i l lus t ra te  how the d r i v i n g  no i se a f f e c t s  the f i l t e r  weights ,

consider a zero order process which is equivalent to es t imat ing a signal

of constant value. For a three—point filter with scalar measurements ,

the total noise vector is

v (nT J

~~ [nT ] =~ v [(n—1)T~ — w[(n—1)TJ (29)

• v[(n—2)TJ — w [ ( n — 2 ) T 1  — w [ ( n — l ) T 1
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If the variance of the measurement noise is ~2 and of the  driv in g

noise ~~~ the covariance matrix of r~
[nT ] is

2 0

R
~
[nT] 0 + ~~2 0 ( 30)

0 0 2 ÷ 2 2

The resulting weigh t matrix obtained using minimum variance is

W [nT~ [a0 a1 a2] 
(31)

where 2 2 2+ 0 ) (2a~~ + ° ) 
, (32)

a0 
= 

2 2 02o (20
i 

+ CT ) 
, 3 )

a1 = I) 
-

and 2 2

a 
a (n1

+ a ) (34)
2 D

where 0 is given by

(20 1
2 + ~

2 ( 2 + 2 ) + ~
2 (20 1

2 + 
2) (35)

+ 02 (0 2 + 02 )

The terms in the weight matrix satisfy the following inequality

a0
> a

1
> a

2 
(36)

For 01
2 0 , the equalities hold and a0 a1 — a 2 1/3 which are

the well known weights to estimate a mean. If is not zero , the

inequalities hold and as a~
2 becomes large with respect to ~

2 , a0

approaches one and a1 and become smaLler so that fading is

_ _
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introduced . The covariance of the estimate is a scalar given by

2 2 2 2 2
- + a ) (20

i 
+ ~ -

S(nT) = D 
= Co2 (37)

where C is a dimensionless constant whose value approaches one as o
~
2

becomes larger than ~~ Thus for a~
2 >> a 2 only the current observa-

tion is effectively used and the variance of the estimate is approximately

2
a .

The fading obviously reduces the signal-to—noise enhancement of a

nonrecursive digital filter . On the other hand , fading can be used to

reduce the deterministic error due to a nonexact model. In practice ,

fading in nonrecursive filters is not often utilized . Instead , the

window length is more typically used as a design parameter. In future

work, however , it may be desirable to further explore the relationship

between fading and the size of the data window to achieve improved designs

when nonexact signal models are employed .

LEAST SQUARES DESIGN OF RECURSIVE DIGITAL FILTERS

The fixed memory or nonrecursive filter design is now extended to

recursive digital filters that utilize all of the data . The result is

a recursive form that is usually called the Kalinan filter. While there

are a variety of derivations for the Kalman filter , starting with a fixed

memory filter using a polynomial model with driving noise gives the result

in such a way to give the reader greater intuition about how the filter

works.

The derivation of the recurs ive filter is started by using .1 signa l

model

x[nTJ $[lJ x[(n—l)T] + w [ (n— 1)T J (38)

_ _ _ __ _ _ _ _  —~~~~~~~~~~~~ -- -~~~~~~~- - -~~ - - ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .-==
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and the scalar observation or measurement model

y[nT ] = Mx [nT l + v [nTJ. (39)

In (38) and (59) the ’ terms w i  (n—I )T I m d  v(  ni I are t is. d r I vi ui ~ u,~ I

and t h e  measurement noise.  I liese noise terms have ,ero mean m~md . i r . ’

uncorrelated with themselves and each other . Given the n+l measurements

starting at t 0 , the total observation vector at time t=nT is given in

terms of x[nTJ as

i[nTI = hi (nTJ + 
~~
(
~
T1 + v

~
[nT1 (40)

In (40) the matrix H[nT J is

M

114 1 1 -I l

ilinT i — (41)

M41[ -nJ

the vector p~ [nT] is

0 1
— M41 [—l] w [ ( n— l ) T j

2
2 [ nT] = —M

1
E1 41[— (3—j)I 

w [ ( n — j ) T ]  (42)

f[—(n+l—j)I !L (n — i ) I ~j

and v
~

[nT ] is the total measurement noise vector . Def in ing  the sum

~~
FT
~
T1 = p

~
[nT I + v

~
[nTJ (4~ )

_ _ _ _  _ _ _  — ~~~~~~~ — --—----- -- --- — -~~~~~~-~~~ --~~ -- - - - - -.
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as the total noise vector with auto ovarianee

R
~

[nT ] = E(~~ 1nT] r~ [nT]} (44)

the optimal estimate using linear minimum variance is given by

x[nTJ WEnT] ~~[aT] (45)

where W [nTJ is the weight matrix

WE nT ] rH
t flT [R~ flT1r 1 H[nT]1_l Ht E n T R ~ [nT~~~

l

L J — L J(46 )

The covariance of the est imate is

SE nT ] W [nT ) R
~

{ nT J W t [nT J ( 47 )

Substitution of (46) and (4?) gives an alternate form

SEnT ] 
[H

t[nT ]
[R~

[nT~]1 H [ nT~
j
~~ (48)

which allows the alternate form for (46) to be written as

W[nT:I SEnT] 14
t [ T ]  R~[[nT~~~

l (4 9)

The forms given by (46), (47), (48) and (49) apply to the remaining

estimates used in the derivation and the reader should remember them.

Next the prediction or forecast of the signal state X[(n+l)T] is

found by first writing the total observation vector ;[nTJ as

Y
~

[nT] = 81[nT ] x[ (n+l )T)  + pi~~
[nT ) + ~~[nT] (50)

where 11
1

[nT ] is given as

H1[nT J H [nT J •1— l1 (51)

and p1~
[nT ] is

-A ~~~~~~~~ ~~~~~ —
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—M$ (—l J  w (nTj

2
—M Z •E—( 3—~j)J wi (n—l--j)TJ

j—l

~i~
[nT] = . (52)

n+l
—14 E $[—(n+1—j)) w[ (n—1--j)T~

j=l j
The term !t EflT ] is the same as in (40) since no more observations have

been taken.

The estimate of x [(n+ l ) T I  is now given by

x
11(

n+l)uj= 
~l~~

u1 
~~
[nTJ (53)

where

W
1[nT] =[HlrnT)[Rl~ EnT)]

1 H
1

[nT )~ H1[nT )~ R
1 

[nT]: -l

(54)

In (54) Is the covariance matrix of the ncise vector

r
1~
[nTJ = El~~

[nT) + v
~
1nT J (55)

The corresponding covariance mat r ix  for  the es t imate  x1[ (n+l)T 1 is

S [ (n+l)T] W [nfl R EnT ] W t (nT l (56)1 1 
~
_ lt _

1 _ 1
[i4r nT I LRlt [nT

~j  
H1[n T ] ,

The development of the relationsh ip between R
it FnT J and R

~
EnT J is

the next issue.

To obtain this recognize tha t sinci’ the random variables w i lil)

and v [nT ] are uncorrelated , R 1~~
[nT I is the sum of the  covarianec

matrices for 21~
(nT j and v

~
[nTJ. For the latter , if the scalar noise

v[nT J has variance ~
2 

the covariance matrix of v
~
[nT ] is a diagonal
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n+l x n+I matrix with elements ~2 Taking the covariance of 
~1~

[nT1

and performing some algebraic manipulation gives

E{2
1 
(nT J 

~~~
[nTJ) E{~ 1

[nT] ~~[nTJ} + H 1[nT J QI-I~ [nT ] (57)

where Q is the diagonal covariance matrix of the driving noise vector

w[nT]. This matrix is usually assumed to be time invariant. Thus, from

(57)

R1~
[nT] = R

~
[nT1 + H 1[nT ] QH~ [nT J (58)

Substituting (58) into (56) now gives

S1[ (n+ 1)T 1 = W
1
[nTJ R

~
[nT] W~[nT] (59)

+ W1[nT ] H 1[nT ] QH~ [nT ] W~ [nT ]

If X
1[(n+1)T] is an unbiased estimate then the constraint relationship

W
1

[nT] H1[nT J = 1 (60)

must be satisfied [4] so that (59) can be simplified to

S1[ (n+l)T] = W1[nT ] R
~

[nT 1 W~ [nT J + Q (61)

Also recognizing that x
1
[(n+l)T] can be written as

x
1
[(n+l)T] = 41[1] x[rtTJ (62)

the weight matrix W1
[nT J is

W1[nT ] = 41 [ lJ  W(nT) .  (63)

Substitution at (58) into (61) and applying (47) now gives the final

form for S
1

[ (n+ 1)T] as

S1[(n+1)TJ 41 1 1 1 SInT I ,
t[nTI + Q (64)

The recursion is now formulated . ~4ben the observation at t — (n+L)T

arrives the new total observation vector in terms of the signal state
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x[(n+l)T] is

H1 (n+1)TI + 
~~

1
~~~

1)T1 + v
~
((n+l)T$. (6’s)

The estlaate is given by

x[(n+l)T] = S[(n+1)Tj Ht[(n+1)fl R
~
[(n+l)TJ ’ (66)

with the covariance

~ [ (n+1)T] - ~~
t [ ( + l )T] 

~~~~~~~~~~~~ 
H[(n+1)T~ 

-1 (67)

where R
~
[(n+1)T] is the covariance matrix of the total measurement noise

vector

r
~

[ (n+1)T 1 = p~ 1(n+l)T1 + y~ [ (n+l)T1 (68)

First the recursion for the covariance matrix is found . Given that

-M41[-I] w [nT]

—M ~ ~L— (3— i )J w [(n+l—j)TI
j—J.

~~
E (
~~

1)T1 H : (69)

n+l
-M ~ ~[-(n+l-j)J w [(n+l-j)Tl

j=1

substitution of (52) into (69) gives

[ o  
I

= - — — I (70)

L2lt E m T
~

Next H[(n+l)TJ is given as

rM 1
H [ (n+l)T] M41[ -l ] ( 7 1 )

LM~~~~~
) I 

—-
~
-- --

~
-
~~~~~~~~- 1 J aL 
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which can be rewritten with the aid of (41) as

r144111 i~1H i nI l — 41 1 —I I ( 1!)
H [ nT I

The covariance mat r ix  for v~~[ (n+l)TJ is now an n+2 x n+2 diagona l

matrix with elements ~
2 
so that R

~
[(n+l)TJ is seen to be

2~ 0

R
~
[(n+l)T] = — -•1— - (7 3 )

0 R i~~
[nT ]

Since this is a diagonal matrix its Inverse is

r I
I 1

2 ()
a !

R [(n+l)Ti -- -- — 
- 

(74)
t 

0 I l~EnT~
j_ l

l

Substitution of (74) and (72) into (67) and performing the matrix

multiplication now yields

S[(n+l)T] + 41t [_l] Ht [nT J[Rl~
[nT~ 

~ HEnT I 41 1_ l~~~
l (75)

Substitution of (51) into (75) and the use of the inverse of (56) gives

S[ ( n+l)T ] + [S1
[nT

J
~~~~ (76)

Equation (76) along with (64) now forms a recursion for the covarlance

of the estimate.
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For the quant ities In (/6) tIme app l i c a t i o n  of t i m e  m a t r i x  in ve r s l ” n

le~~na [5], gives 
—

[9 + ~sl [nT i1 ~j - s
1 [nT I ( / 7 )

— 
~;1

{nT j M t [M S
1 I n i I M

t 
+ M

This form will be used to generate an expression for the Kalman gain. Post

multiplying both sides of (75) by M
t
/cl

2 and using (75) the Kalman gain is

defined as

K[(ri+l)T1 = S[(n+1)T] Mt/c
2 (78)

= S1[ (n+l)T] M t [~ 2 
+ M S 1[ (n+l)TJ M t I

l

Thus the covariance matrix given by (76) becomes

S[(n+1)T1 [I - K [(n+l)TJ M I S1 1 (n+i)T] (79)

The recursion for the optima] estimate Is now formed that uses the Ka lman

gain given by (78). Using the form for the optima l estimate given by

(47) the estimate x[(n+1)T] is

xf (n+l)T] S[~~ 1)T ] ~t [ (  +1)T ]~ R ((+1)T]~ 
-l 

~~[(n+l)TJ (80)

where 
~~
[(n+l)T1 is the new total observation vector given by

r
yE (n+l)TJ

;E ( ~~ 1)T 1 - -— - (81)
[nTj

Substitution of (74), (72) and (81) into (80) and carry ing out the matrix

multiplication yields

x[(n+1)T] ~~~~~~~~~~~~~~~~~~~~~ 
(82)

+ 411-11 H
t [nT ,

Flt
[nTJp y~

1nT ]~
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Using the estimate of the forecast x
1
[(n+1)TI (82) is simplified to

Mt r -

~~ 1
x[(n+l)T1 — SI(n+1)T1 -

~~ y[(n+l)T1 + S11 (n+l)Tj 
— 

x1
[(n+l)TJI (85)

Adding and subtracting (M
tM/o

2) x
11 (n+l)T), perForming some al~~ehraic

manipulation , and applying (76) now yields

x[(n+ l)T ] = x1[(n+l)T) + K[(n+l)TJ ~y[(n+l)T1 - M x1
[( n+1)T~ (84)

where K[(n+l)T] is given by (78). Equations (84), (79), (78), (64) and

(62) now form the recursive formulation called the Kalman filter . These

equations are now summarized as

= 41(1) x[ (n—l)TJ , (85)

S1(nT) 
= 41(1) S[(n—l)T] •

t(1) + Q , (86)

K (nT ) — S
1

(nT) Mt[0
2 
+ 11 S1

(nT) Mt ]~~ , (87) 
-

S (nT ) — — K(n T) MI S1
(nT) (88)

and

x(nT ) = x
1

(nT) + K( nT) [y ( nT) — 14 x
1
(nT) J (89)

= [I — K(nT)M] 41(1) x[(n—l)T] + K(nT) y(nT)

In this set of equations, x1(nT) is the forecast or prediction of the

estimate at t—nT using the previously generated esttmate at t— I (n-l )I I .

The covariance of the forecast is S1(nT). The term K(~T
’I Is the t ime

varying Kalman gain matrix and y(nT) is the observation at t nT . The

terms x(nT) and S(nT) are the estimate at t—nT and its covariance.

The term ~2 is the variance of the measurement noise and the term Q is

the covariance of the driving noise. It is the term Q that serves as

a key design parameter. 

---- ----~~~ _
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If there is no ti r lying noise so t h it  t he  d t i g o n a l  elimeu t ~ o t  ( )

are al l zero , the f i l t e r  is simply an expanding memory filter. This means

that If the f i l t e r  is ini t ial ized properly , the estimates w i l l  correspond

to those obtained by designing nonrecursive f i l t e r s  where the data  window

starts at zero and a new weight matrix W(nT) is computed as each new

measurement Is made. Obvio usly as the window expands , the variance of

the estimate will decrease; however , if the model is not exact determinis-

t ic  errors will begin to increase .

In using the equations , they must he Initia lized properly if a trul y

unbiased estimate is to be lam ed . in pract i c e  this is usually done us t u g

a nonrecursive filter. For exac t Initialization , driving noise must  be

included in the computation of the nonrecursive filter weights. To mini-

mize the computation , the minimum H matrix should be used which means the

number of rows should equal the number of columns . By using this minimum

H matrix the filter weights are computed and the initial optima l estimate

is formed from the actual data.

USING THE PROGRAM S

HARDWARE

The program s are wri t ten  in DOS FOtIRAN . Ihey were developed on a

PDP 11/20 with a DOS/BATCH operating system . Printed results are written

to logical unit 5, which can be assigned at run time to a l ine print er ,

CRT terminal , disk file , or other suitabLe output device. Data is entered

from units 6 and 3, whi ch can be ass i gned to a ca r d  r ead e r , d i s k W i t i

file , IT? keyboard , or any other stilt able inpul dev Ice . P E a t  s in be

obtained with a GT4O graphics disp lay termina l and t h e  p i ot t  lug s ub r ou t  Ines

provided . The programs can be easily modified to use other plotting routines.
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NONRECURSIVE FILTE R PROGRAM

The program for generating the coefficients for non—recursive filters

is called PROGRAM WINDOW . WINDOW is wri t ten  in DEC FORTRA N , but  may be

run on other versions of FORTRAN IV with minor modif icat ions . The program

can call plotting packages to produce CRT or hardcopy plots of the filter

response to various inputs.

Program WINDOW reads the f i l t e r  parameters SIGMA , N , H, IA , IPLOT

from logical unit 6 , where :

SIGMA determines the i n p u t  covartance m a t r i x  R.
~f SIGMA ‘ 0.0 , R becomes ~2*i , whe r e ~2
= SIGMA and I is the identity matrix.
If SIGMA < 0.0 , the matr ix  R is read from
unit 6 in 10F8.2 FORMAT .

N is the number of points in the window
(1 < N < 20 ) .

M is the order of the polynomial fit (1 - M < 9 ) .

IA is the o f f s e t  n from the f i r s t  point in the
window. If IA > 0, the f i l t e r  predicts [A
sample times ahead of the most recent sample.
If IA 0, the filter smooths IA sample times
behind the most recent sample.

IPLOT is the plotting control variable . If IPLOT
— 0, the program finishes after the coeffi-
cient matrices are computed and printed
out .  If IPLOT # 0, an input signal is read ,
and the input points are filtered using the
coefficients computed .

The parameters are read in FlO.4, 413 FORMAT .

Once the f i l t e r  parameters have been read , WINDOW generates the re-

quired S (covar iance) and T matrices , and computes the  w e i g h t  m a t r I x  W.

All three matricies are then written to logical unit 5. If IPLOT 0,

the program terminates after the weight matrix W has been printed .

If IPLOT ~ 0, WINDOW reads 101 sample points from logical unit 3 in

G15.6 FORMAT. These points are provided by the user , and are used by

WINDOW as the filter input signal. The program filters this input signal

- - — -
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using the weight matrix W , and t abu la tes  the input signal , output si gna l

( f i l t er response), and error  signal (input minus o u t p u t )  fo r  each sample

time. The tabulated results are printed on unit 5. The sum of the total

absolute error is also comp uted and written to unit 5. WINDOW then calls

the plotLing package routines (subroutine rD IOT) to p lot the input and

output (estimate) signals vs. time . A f t e r  a PAUSE , the program ca l l s  the

plotting package to plot the error signal (input minus output ) vs. tim e .

The plotting packages are included to be used w it h WINDOW , or WINDOW may

be changed to call other plotting routines.

Program WINDOW can be modified to write the derivative estimates.

Note from equation 2 that the mth derivative term is multi plied by a

Tm/rn! factor, where T is the sample time. Thus, if the derivative

• estimates are written out , they will be scaled by this factor. To

illustrate the use of the program , WINDOW was run with the parameters

SIGMA = 1.0, N = 5, M = 3, lÀ = 0, and IPLOT = 0. The filter weighting

coefficients are listed row by row , and are shown with the input para-

meters and S and T matrices In Fig. 1. The filter obtained using the

weight matrix shown estimates the input data and the first three deri-

vatives. In equation form , these estimates are given by

;[nTl 0.9857 y(nT J + 0.05714 y[(n—L)TJ — 0.0857 y~ (n—2)T1

+ 0.05714 y[(n—3)TI — 0.01429 y[(n—4)TI

— 1.488 y [nTL .
— L6l9 iL~~-!)ri. - .~~/I4 yL(°.-L):’i

+ 1.048 y~ (n—3)TJ —0 .3452 y[(n—4)TJ
T

;[nTJ = 0.6429 y [n Tj  - 1.071 y[(n-l)TJ- 0.1429 y~~(n-2)T]

T
2
~
’
2

+ 0.9286 y[(n—3)TJ — 0.3571 y[(n—4)TI
2’T ‘2
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x[nT J 0.08333 y~nT] — 0.1667 y[(n-1)~~
T3”6

+ 0. 1667 y[ (n— 3)T J 
— 0.08333 yj(n—4)T]

T3”6

RECURS IVE FILTER S

The Kalman fil ter program is called ADAPT. ADAPT is w r i t t e n  In I)EC

FORTRAN, but may be run on other  versions of FORTRAN [V w i t h  minor  mod i-

fications. The program can call plotting packages to produce CRT or

ha rdcopy plots of the f i l t e r  response to various inputs.

Program ADAPT reads the filter parameters SIGMA , M , and Q from

logical unit 6, where

SIGMA determines the initial covariance
matrix R. If SIGMA > 0.0 , R becomes
~2*i where = SIGMA and I is the

• identity m a t r i x .  If SIGMA < 0.0,
the matr ix R is read from u n i t  6 in
10F8.2 FORMAT.

M is the order of the polynomial fit
(1 < M < 9).

Q is the driving noise term.

The parameters are read in F10.4 , 13 ,F 1O.4 FORMAT .

Once the f i l ter  parameters have been read , ADAPT generates an i n i t i a l

S (covariance) and T matrix . ADAPT then generates an ini t ial  weight

matr ix  El , which is used to in i t ia l ize  the x vector.  The i n i t i a l  covar i —

ance matr ix  is used to in i t ia l ize  the S ma t r ix .

Once initialized, ADAPT reads 101 sample points f rom logical unit 3

in G15.6 FORMAT . These points are provided by the user , and are used by

ADAPT as the Kalman f i l t e r  input. The program f i l t e r s  the input using

equations 85 through 89. The sample number filter input , filter output ,

error signal (input minus output), and Kalman gain are tabulated and

written to unit 5. The total absolute error is also computed and written

—

~

— - -

~
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to unit 5. ADAPT then calls the plotting package routines (subroutine

IDIOT) to plot the input and output (estimate) si gnals vs. time . After

• a PAUSE, the program calls the plotting package to plot the error sig-

nal (input minus output) vs. time. After a second PAUSE, IDIOT is

called to plot the Kalman gain vs. time .

Program ADAPT can be modified to write the derivative estimates.

Note from equation 2 that the mth derivative term is multip l ied by a

T
m/rn! factor , where T is the sample t ime . Thus, if the derivative

estimates are written out , they will be scaled by this factor.

To illustrate the use of the program , ADAPT was run with the

parameters SIGMA = 1.0, H = 3 , Q = 0.0. The S (covariance) and I

matrices used to generate the initial weight matrix (W) are shown in

Fig. 2. The S and W matrices are used to initialize the Kalman fil-

ters ’ S and x matrices. The Kalma n filter was then used to filter

an ideal sinusoidal signal. A portion of the tabulated results is

shown in Fig. 3.

GETTING ON LI NE 
-

In order to run program WINDOW and ADAPT, first build two files

named WINDOW .FTN and ADAPT.FTN from the sources provided (card deck

or paper tape). Also create PLT.FTN and SENDCT.MAC from the sources .

Compile programs WINDOW and ADAPT with the FORTRAN comp iler to create

WINDOW.OBJ and ADAPT.OB.J. The one word integer option should be

selected for all compilations. Also , compile PLT.FTN to create

PLT.OBJ. Assemble SENDCT.MA(; under the MACRO assembler to create

SENDGT.OBJ . Create a subrout ine library called PI.TLIR .UR.I 1 m m

PLT .OBJ and SENDCT.OBJ (in that order). Next , LINK WINDOW.OB .J ,

PLTLIB.OBJ and the FTN library to create a file called WINDOW.L[)A . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - •~~~~~~• - -
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Also, create ADAPT.LDA by LiNKing ADAPT.OBJ , PLTLIB.OBJ and the FTN

library. The files WINDOW.OBJ, ADAPT.OBJ , PLT.OBJ and SENDGT.OBJ may

nov be deleted .

• Before running WINDOW or ADAPT, build the file PLOTGT.MAC from

the source. PLOTGT is the plotting routine that is loaded into the

GT4O. Assemble and LINK PLOTGT so that PLOTCT.LDA may be loaded into

the GT4O. After PLOTGT .LDA is running in the GT4O, ADAPT.LDA or

WINDOW.LDA may be executed using a RUN command . The source listings

contain additional documentation on these programs .

I
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•-~~ FINITE MEMORY D I G I T A L  F I L T E R  PAC~~AGE s +- +

VAR I ANCE OF ERROR~ 1. 0000
SI~~F OF WINDOW— ~
ORDER OF F11 ~TO PREDICT 0 UNITS AWAY FROM THE FRONT OF THE W I N D OW

• MAGIC T MA T R I~<
1. eei:io 0 ~~~. ~~ ~~~• ~~

i eeee -i. 8000 1. ooee -i. oeoe
1. 0000 -2. 000 4. 800 -8 800
.• 00c30 -2. 800 9.800 -27.80
I 000~ -4. @00 16. 00 -64 00

VARIANCE MRTRI:- -~. ~0. 9857 1. 488 0. 6429 0. :~222E-01
1 488 6. 279 . 869 a 5972

a 6429 2 869 2. 571 0 41t7
O 222 E-01 0 ~972 0. 41.67 0. $944E-Oi.

WI ND OW WE IGHTS1 FROM FRONT TO ~AC:I..

ROW 1. OF W.. COF:PESPOND IN’.S T~’ THE INPL!T EIGNAL
0. 9957 a 5714E—@1 -a 85?IE-01 C. 5714E-01 -0 1429E-Oi.

ROW 2 OF W.. CORRESPOND ~ ~~ T~ DEF: I VAT I .-‘E NUMEEP
1. 488 —1. 619 —a 57j4 1. 048 —o :452

ROW 2 OF W 1 CORRESPONDING TO DERIVATIVE  NUME:ER 2
0. 6429 -1. 071 -0. 1429 0. 9296 -0. 2571

ROW 4 OF W.. CORRESPONDIPIG IC’ DERIVATI~-.E NUME~EP
O 92::2E—01 —0. 1667 -0. 2576E-@6 0 1667 -0. 8 .32E-0i

Pig. 1 — Program WINDOW Sample Output
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+**r.:PLMRrI sT~:uI:. ft’F’E DIGI TRL FILTER PAC K AGE f ~ *

DPI’! ING NOISE= 0 0000
ORDER OF F I T = 2
INITIAL ERROR VAR IANCE I 0000

MAO I C T MAIR I ~:
-1 @000 0. 00013 0 0000 0 0000
1 00130 --1. 0000 1. 00130 -1. 0000
1 0000 -2. @130 4. 000 -9. @013
1. 0000 — 2. 0130 9. @00 -27. @0

\.‘ARI~~~CE MATRI:- --:. 5
1. 0000 1 833 1. 0000 Ci 1667
I 14. 72 12. 50 2. 611

I @000 12. 50 11. 50 2. 5130
O 1667 2. 611 2. 5013 0. 5.555

WINDOW WEIGHTS~ FROM FRONT TO E~AC~.

ROW -1 OF W.. C:ORRESPOP-ID I NO TO THE I NP’JT S I GNAL
1. 0000 0. 4128E-05 -0. 2582E-05 a 9537E-0E

ROW 2 OF W.~ CORRESPONDING TO DERIVATIVE NUMEER
8::: -3. 000 1. 500 -a 2::::.

ROW 3 OF w.. CORFESFOND ING 1’:’ DERIVAT I’ ’E NUMEER 2
1 ‘3000 -2. 5013 2 000 -0 5000

ROW 4 OF W CORRESPOND I NG TO C’ER IVATI’- ’E NUMEER =
13 1667 -8. 5000 13. 5000 -0. 1567

Fig. 2 — Program ADAPT Sample Output

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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T I M E  OUTPUT E ST IMATE ERR OR I R L  GA I N
4 000 0. 2294 0 2894 13 268 E-~ 5 13 9957
.5 000 8. 4794 a 4794 0 1527E - 04 0 9595

~ 1300 0 5546 0 564 0 5460E-134 C 9492
7 1300 13 6442 €1 6441 0 I01?E-CC ‘3 9152
8 000 0 7 174 a 7172 13 I5E:E-O:: 13 8794
9 0013 0 7222 13 782- 1 0 2..:9E-o: 13 9413

1CI 0013 a 9415 13 84-12 ‘3 3122E-13: 13
Ii 00 0. 2912 0. 8908 13 4330E-8 13 7707
12 00 a 9220 a 9314 13 6002E-0: 0 782
-17 1313 a 962:5 13 9627 13 8295E-Ci 0 71379
1-4 013 0. 9855 0. 984:. 0 114’3E-k32 a ~ 79~
-iS 00 0. 9975 ‘3 9959 @ ISSIE-02 o 55:4
i~~ cio 0. 9996 0. 9975 13 2@E.SE-02 13 5289
17 @0 0. 9917 0. 9:399 0 2768E—02 ‘3 5061
18 013 0. 9728 0 9702 0. 7620E-02 0 5842
19 00 . 0. 9462 0. 9415 0. 4669E-02 O 5649
20 00 0. 91392. 0. 9@4 13 5939E-02 @ 5462

00 a 8632 0. 8558 0. 450E-02 cj .5297
22 00 13 808.5 a 7992 a 9229E-02 13 512:.
2: a 7457 a 7244 o 1130E-@i. 13 4959
24 @0 13. 57.5.5 0. 661.? €3 1 67E-@1 13 4822
25 00 0 5995 0. .5821 0 1625E—0I 0 4684
25 013 0 5155 13 4951. 13 19 7E-01 13 4.552.
27 013 a 4274 0. 4047 0 2272E-131 0 4420
29 00 0. 2350 0. 2085 0 2640E—01 0 42.12
29 00 a 2392 0 2089 0 3040E-01 0 4201
:0 00 0. 1411 13 1.064 0 3472E-131 0. 4095
:I 00 0 4158E-’1-1 13 2265E-@2 0 ::9:2E—01 13 2:995

—0 5~~~ E-0-1 
—

~~~ xo-’~ 13 ~~ j~’~ -oj o
00 -0 1577 —0 2070 0 4924E-CI o

24 00 —8. 2555 -13. 108 C 5447E-01 13 2720
::5 ‘30 —0. 3509 -0 41135 13 5991E-’31 o 2:52.7

00 —0 4425 -0. .51377 13 65-19E-01 13 25.57
00 -a 5298 -0 6004 0 7054E-C11 13 2- 490

29 013 —0. t~119 -0. 6875 13. 757EE—~31 0. 3407
19 00 —a 5279 —0. 768.5 a 2@7SE—Oi. :2:7
40 00 -0 7568 -Ø 2422 0 254 E—01 0. 3259
-41 ‘30 -€3 . 8192 -0. 9080 0 8962E-01 0 2204

• - 013 —0 9715 -0 9649 13 9::EE—e1 13 :142
130 —0 9162 —1 1312 13 96 7E—01 o 1082

-44 @‘~‘ -0. 95-15 -i 0.50 0 99$7E—01 o :024
45 00 —0 9775 —1. 077 13 9921E-@i 0 2969
45 130 -0. 997 —1 094 Ci 9997E-i?.1 13 2915
47 ‘30 —0. 9999 —1. 099 13 9291E-01 0 2852
49 013 -0. 9962 -i. 09 13 9642E-01 ‘3 29-1:

1313 —0 ~~~~~~~ —i 0?~ 0 9255E—131 0 2755
50 00 —0. 9529 -1 046 13 8E97E-01 13 2718
Si. 00 -0. 9258 —1. 00.5 0. 7952E-€i1 0 257:.
S~1 00 —0. 2825 -0. 9.52.9 s3 7029E-’.Zi-l 0 252-f
5: @13 -0. 2322 -0. 8914 13 5915E-01 13 2587
54. ‘30 —a 7 722 -0. 8125 13 4520E—01 13 2545
55 00 -0. 70.5.5 -0. 7258 ü 1325E-01 o 2507
55 00 -0 5313 -0. 6437 €1 1241.E-- 01. 13 245:?
57 00 -0. 5507 —0. 5429 -13 7750E-02 13 24:1
58 00 -0 4646 —0 424:: -0 30 2E-01 13 2:95
59 00 —0. :729 -0. 2185 -0 5528E-01 0 22.50
60. 00 —0 2794 —0 1968 --Cl 8255E-01 13 2225
El 00 -0 -1822 -0 6975E-O1 —0 1124 0 2292

Fig. 3 — Program ADAPT Sample Output

~
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0.9857 0.05714 —0.0857 0.05714 —0.01429

1.488 —1.619 — 0.511 4  1.048 —0. i65 2

0.6429 —1.071 —0.1429 0.9286 — 0 . 3 5 1 1

0.08333 —0.1667 0.0 0.1667 —0.08333

Weight Matrix

0.9857 1.488 0.6429 0.08333

1.488 6.379 3.869 0.5972

0.6429 3.869 2.571 0.4167

0.08333 0.5972 0.4167 0.06944 ’

Covariance Matrix

Table 1 Optimal Weight Matrix and Covariance Matrix For
a Five Point Nonrecursive Filter Using a Third
Order Polynomial Model. The Filter Estimates
the Data at the End of the Window
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—0. 08571 0. ~429 0.4 851 0 . I4 2~) — 0 . 0 ~~5/ I

—0 .08333 0.666 1 0 .0 -0 .666/

0.1429 —0 .07143 —0 . 1429 — 0.07143 0 .1429 
-

0.08333 —0 .1667 0.0 0.1667 —0.08333 ’

Weight Matrix

0.4857 0.0 -0.1429 0.O~~~~

0.0 0.9828 0.0 —0 .2361

—0.1429 0.1) 0.0714 3 0.0

0.0 —O .fl61 0 .0 I ) .06964~

Covariance Ma t r i x

Table 2 Optimal Weight Matrix and Covariance Matrix For
a Five Point Nonrecursive F i l te r  Using a Third
Order Polynomial Model. The Filter Estimates
the Data in the Center of the Window 
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INTRODUCTION

This report contains the documentation for the LPASS program .

It consists of the design proced ure used , a description of the

program , and design examples using the program .

The purpose of the LPASS program is the design of a max imall y

f lat  Butterworth or an equiripple Chebychev lowpass digital f i l ter .

Sta rting with an analog f i l t er , the bilinear Z t ransform is used to

f i nd an equivalent digital filter . The user enters the following

parameters: the number of second order sections, the type of filter ,

the sampling interval, the —3db cutoff frequency , the starting frequency

and the frequency increment. If a Chebychev filter is being designed ,

the ripple must also be entered .

The program calculates the digital f i l t e r  coeff ic ients  for up to

three second order sections in cascade. The program is designed to

calculate up to a sixth order filter, thus the filter order is two

times the number of cascaded second order sections. The filter

magnitude response is generated over the frequency interval specified

by the input.

The LPASS program, written in Fortran IV , is supplied as a card

deck with this report. The program is in the form of a subroutine

and can be used as is by a call statement from the main program.

Data may be input via cards with output available through a line

printer. The input/output devices may be altered as explained in

this report. Graphics routines may easily be appended to the program .
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I. Design Procedure

A. Preliminary Discussion

The transfer function of a second order di gital filter in the

Z domain is given by

K
1

(A
0
Z2+A1Z+A2)

8(Z) = (1)
Z
2+B

1
Z+B

2

where the A’ s and B ’s are the coefficients of the numerator and

denominator respectively. One coimnon method of des igning  a di g i t a l

filter is to start with an analog transfer function H(S) and

transform it to the digital transfer function 8(Z). This

program will  calc ula te the scale fac tor  K 1 and the coefficients

A0, A1, A2 , B1, and B2. The transformation used is the extended

bilinear Z transform defined as

2 Z—lS -
~~~~

(
~~ T) , (2)

where T is the samp ling interval. When this transform is ~mployed~

the desi red frequencies musL first be prewarped to make thorn corn-

patible with the digital f i l t e r .  The prewarped cutoff frequency is

given by

2
WDC =~~~ Tan 

~

-t—

~ 

. (3)

This prewarping is done by the program .

B. Butterworth Low—Pass Filter

We star t  wi th  a normalized second order low—pass f i l t er  in

the S pl ane.

H(S)  = 2 (‘,)
S + 2ScosQ + 1

- _--—- ---- - -
-_ -- ~~~ S-----
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where the angle 8 is in degrees (in the program). 8 may be found

from the Butterworth circle and the relationship

s = e
±j 2m )/2n (5)

where n is the order of the filter and m = 1, 2 , 3 , ... , n.

This relationship is determined by the following procedure. By

def inition, a filter is 11
th 

order Butterworth low-pass if its gain

characteristic is

. 2 a (6)H (jw ) = 
2n

1 + (—
~~~)

wher e a is the gain , u
~ 

is the desired cutoff  frequency and a is

the order of the filter. Note that I H ~(iw) l 2 goes to zer o as u goes

to infinity, indicating the filter does attenuate the higher frequencies.

To determine its efficiency as a low—pass filter we calculate

2n—l
(;~)

d . an 
_ _ _ _ _ _

~~
— H ( ~ w) = -- 2n 3/2

~ ~~ 
]

Thu s

~~~~ (ju) I1 = 0 (8)
du L ~ J 0 o

for all n and hence the gain characteristic stays flat for u close

to 0. Also

= — an (9)
2w IiC

and hence , the decline rate or “roll—off” of the gain characteristic
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at w = w becomes sharper as n increases. In other words, the

approximation to the ideal low—pass filter improves for larger n.

The order n is chosen according to desired specifications. The

references have equations , curves , and tables that  select n , given

the specifications. For example , page 227 of Rabiner and Gold g ives

an equation for calculating a when the transition band is specified .

In the design , the poles for the full frequency response , H ( S ) ,

of the th order Becterworth filter must be determined . The pro-

cedure is as follows :

H (jco)j
2 

= H~ (jw)H~ (jw) = H~ (jw)H (ju) 
=

r 2 1 2
= [ H ( S ) H ( — S ) l

s=3~ =1 
a 

2 n 1  
= 

a 
2n

L l + (- _ ! ±~) 
J s

3Wc 3 c

1
2a for a evenr 521n -

2
= a 

= (10)r ~2ln
1+  -

~~

----

~~ 2L 2J a
w — , for n odd
c 

r s
2
1’~~1 -

Lwc J

Setting the denominators equal to zero,

= (4~1)l/2fl (11)

Thus, the pole locations are the 2n roots of ±1 , depending on whe ther

the order is odd or even. These roots are located on a circle wi th

radius w centered at the origin of the S plane and have symmetry

____________________ _ _ _ _ _ _  _ _ _ _ _ _ _ _  ~~—-
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with respect to both real and imaginary axes. For a odd , a pair of

roots are on the real axis and the rest are separated by it/n radians.

For n even, a pair of roots are located ir/2n radians from the real

axis and the rest are again separated by ~/n radians. No roots are

on the imaginary axis for either even or odd n.

Let p1, . . . , p2 be the roots. From the syimnetry of the pole

locations, if p1, . . p~ are the roots lying in the right—half

plane, the left—half plane roots are —p1, . . . , —ps. The

magnitude—squared function can then be written as

a
2 (_l)nW 2

n

H~ (S)H~ (_ S) = 
(S+p1)... (S+p )(S-p1)... (S-p )

To be stable , H (S) must have all its poles In the left—hall p l a n t - , thus

n
aw

H (5) = 
c . (13)

n (S+p1)... (S+p )

The program is written with unity gain at DC,(w=0), therefore a = 1.

In order to locate the poles as specified above, consider the

following set of equations .

±j lT ( 2m—1 )1 = —e , m = 1, 2 , . . . , a; for n even
(14)

±j2irk
— l  = —e , k = 0 , 1, . . . , a; for n odd

Substituting equations (14) into equation (11) yields

S
= —e , m = 1, 2 , . . . , n; for a even

C 
(15)

S = —e , k = 0, 1, . . . , n; for n odd

Equations (15) will give the pole locations as described above.

Consider the form of equations (15)

±j aS —W e = w [—coso ± jsinO]. (16)

3-

-__ - - -

~

---  -- - --.-~~~~~~~~ - - -  _ - - - -~~~~~~~~ -- . 
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From this relationship, it can be seen that the magnitude for each pole

is 
~~~~ 

regardless of the angle , and thus all the poles lie on a circle

with radius w
C

As an example consider a second order filter , n = 2.

r_
~i = _e±j 2m_1)t4 in = 1, 2

L
~~ 

i~~~~
C

S = w  1±45 °±1 C

= ~ 1±135 °

0 = 45°

The relationship of these roots about the circle of radius

is illustrated in Figure 1. The angle 0 is always measured from

the negative real axis.

In the program , only the angle(s) less than 90° are considered

so that poles lie in the lef t—half  plane since poles in the left—half

plane are stable. Putting 0 = 45° into equation (4) yields poles

at —0 .707 ± jO.707. These locations are in the left—half plane.

In the program, only even order filters are considered .

Below are tne values of 0 for 1, 2, and 3 second order sections

in cascade.

Cascaded Filter Angle
Sections Order

N n 0

1 2 45 °
2 4 22.5 ° , 67 .5 °
3 6 75° , 45° , 15°

These calculated angles are incorporated in the program in the order

given above.

_ _ _ _ _ __ _ _ _ _ __ _ _ _ _ __ _ _ _ _ _ _  -~~-~~~~~~~~~~~~ --~~~~ -_ ~-
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For N second order sections there are N 0’s. Only one specific

0 is used per stage, because each stage has only one set of pole

locations.

The following is the procedure to derive the magnitude of the ~
th

stage, where I varies from 1 to N.

Given the normalized second order low—pass transfer function

equation (4), we employ the low—pass to low—pass transformation for

an arbitrary cutoff frequency w given by

~~~~~~~~ (17)(0
C

For the ith stage, equation (4) becomes

2
= 

2 
(18)

S +2Sw cosO +wc I c

The extended bilinear Z transform, equation (2 ) ,  is used to get to

the digital domain. Employing equation (2) on equation (18) and sub-

stituting WDC for w~ yields

2 2
H 17~ = 

WDC (Z +2 Z+1)
1’’ 4 2  4 2  2 2—~(Z —2Z+1)+~(Z —1)WDC cos0~+WDC (Z +2Z+l)

T

Putting the denominator of equation (19) in monic form yields the

transfer function for the ith stage of the filter

K11(A Z
2+A Z+A2)H1(Z) 2 

0 1 (20)
z +B

liZ+321

Equation (20) is the same as equation (1) with the exception of the

subscripts. In equation (20)
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A
0

= A
2

= l

A~~= 2

= 4 + 4 w~c cose~ + wnc2 (2 1)

_ wic 2
Kii

_ 
G
1

2 82WDC —
~~~~~~~~

0
1

—i — WDCcosO +WDC
2

T
2 T I

~~~2I~~~~~ 0
1

Letting z = e
ST and S = jw and taking the magnitude of H1(jw) we

have

J(A0cos (2wT)+A1cos (wT)+A2) 
2+(A0sin (2 T)+A 1sIn (wT) ~ 

2

= 
2 2(cos (2wT)+B1~cos(wT)+B2~ ) +(Sin (2wT)+B1.sin(wT)) 

(22)

This magnitude function is the same for both the Butterworth and the

Chebychev filters where I varies from 1 to N.

C. Chebychev Low—Pass Filter

The advantage of the Chebychev low—pass filter over the

Butterworth low—pass filter is that the transition band of the

response at frequencies greater than is sharper for the Chebychev

low—pass filter. This is achieved by specifying a small percentage

of ripple in the low—pass region. The amplitude of the ripp le is

specified by the quantity tS (labeled RIP in the program). Figures 6,

7 and 8 I l lustrate  the r ippling for second , fourth , and sixth order ii - -

ters , respective l y. The poles of the f i lte r  are found on an e l l ipse

-_

~

-- - — —  -_---- -- — — -- —_ -- _-_ —- -- -

~~~

_-- _
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described by two Butterworth circles of radIi A and B with A<B.

The location of the poles on the ellipse is a function of the ripple,

5, and Is given by the following equation:

B, A = ~~J~~
2+l+e~~)

lh’2N 
± (~ c

_2
+l+c

_l
)~~~

’2N
) (23)

where

C — 

~~~~~~~~~~~~~~~~ 

~
]
~~~

2 (24)

B is given for the plus sign and A for the minus sign. The Chebychev

ellipse then has major axis B and minor axis A. The location of the

S plane poles on the ellipse is given by

Real Part = A cosO

(25)

Imaginary Part = B sinO

The 0’s are the same as given for the corresponding order Butterworth

fi l ter .  An example of Chebychev pole locations is illustrated in

Figure 2. For A — 1/2 and B = 1 in a fourth order filter ,

0 22.5° and 67.5°. The Chebychev pole locations are determined

from equations (23), (24), and (25).

The analog second order Chebychev low—pass filter is

K s
H(S) = 

2 
2 (26)

S +K8S+K2

where

a = 

[l÷~
2
~~~2J 

1/N (27)

c is calculated from equation (24) and N is the number of second

order sections. K~ and K
2 are calculated by

_ _ _ _ _ _ _ _ _ _ _ _ _  ]
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1(
8 

= 2AcosO (28)

= A2cos
2O + B2sin2O . (29)

The subst i tution of the low—pass to low—pass transformation for some

cutoff frequency w , equation (17), into equation (26) yields

2
K2aw

— H ( S , 2 
C ( 3 0)

S + SK w + w K
B c  c 2

Using the extenr~~d bIlInear Z transform , 
equation (2), and suhsr 4t i $inc ’

WDC for w we have for any section

K 8WDC
2(Z2+2Z+l)

4 2 2
2 

2 
. (31)

—(Z —2Z+l) + -~K0WDC(Z — 1) + WDC2K (Z 2+2Z+l)2

Collecting terms yields the following for the 1th section

K . ( A  Z
2+A Z+A )

H . ( Z )  = 
li 0 1. 2 ( 3 2 )

1 z +B1~ Z+B21

where

A0 
= A2 

= I

A
1 

— 2

G1 
= 4 + 4 WDC.K8 + WDC2K2

aK
2

WDC2

K11 
( 33)

2W0C2K 2 
- -4

1’Bli —

- - ~~~~ -~~~~~~~- - ~~~m-— ~~~ - -- -~~~~ - —-  -- - - --
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4 - WDC.K
8 
+ WDC2K

2
B21 01

i varies from 1 to N. These coefficients are used to find

given in (22).

For applications where a sharper roll—off is required the Chebychev

filters are used. The roll—off increases with a for any fixed c.

For fixed n, the roll—off decreases as c decreases. For small

c the ripple width , S , Is small, see equation (23), but so is the

roll—off. For larger r the roll—off improves but the ripple width

Increases. In the first case the filter will be good at LC ana

low frequencies, unsatisfactory at hIgh frequencies. The converse is

true in the second case.

The above observations suggest the procedure to be used in

selecting a Chebychev filter to match a set of specifications. The

permissible ripple width specifies c. With c fixed, select a

to attain the required roll—off.

~ 

- -  
~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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II. Using the Program

The first data card read into the program contains the number of

second order sections to be cascaded , N, and the type of filter

desired , KN. N is equal to 1, 2, or 3, which corresponds to

nd th th . . .the 2 , 4 , or 6 order filter respectively . ~~ = 1 yields a

Butterworth filter , while KN = 2 yields a Chebychev filter . The

format on the N , KN card is 212. The second data card read in

is the sampling interval T in F10.6 format . When choosio~. T, l /T

should be approximatel y equal to ten times the cutoff frequency, t o .

The third data card contains the value of ~j in Fl0.4 for m at.
c

For the Butterworth low—pass filter , to is the —3db cutoff frequency.

For the Chebychev filter the magnitude of the response is I/(1+c
2
)h1

’2

= 1 — 6 at w = t o .  to is in radians . 6 is the ripple factor.

If the desired f i lter is Chebychev , i .e . ,  KN = 2, the next

data card is the ripple factor (RIP) In F5.3 format. The filter

response for all even order Chebychev low—pass filters passes through

l/(l+c
2
)hh

I2 
= 1 — 6 for w = 0 and For odd order filters , the

magnitude is 1 for w = 0 and l/(l+r2)1~
’2 

= 1 — 6 fo r -~~ =

This program produces only even order filters. If the desired

filter is Butterwor th , i.e., KN = 1, this data card is omitted from

the data deck.

The final data card is the starting frequency (FREQ1) and the

frequency increments (DELT) in radians. The format of the FREQ1,

DELT card is 2FlO.4. Determine DELT by the following :

DELT = 
final frequency — starting frequency

1024

This Is necessary because there are 1024 frequency data points calculated

in the program. Choose FREQ1 and DELT to insure that calculated values

— —  ------- ---— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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will include the data of interest. For maximum efficiency of the

program, DELT should be a multiple of 2~~ so no decima l to binary

conversion errors are incurred.

The digital filter coefficients are computed and printed out for

each second order section. The full filter magnitude response , as well

as each section magnitude response, is printed for each of the frequency

increments specified . When N = 1, the section magnitude response is

the fu l l  f i l ter magn itude response and Is only printed once.

The program may be easily modified to incorporate a graphics

disp lay of the magnitude response. There Is a comment card in the

LPASS program indicating where the graphics subroutine call card should

be in serted .

The program is written with input obtained via device 4 and output

written to device 6. These numbers should be assigned to the appro-

priate devices prior to running the program.

The program was developed on the PDP-ll/20 with a DOS/BATCH

operating system. Trial runs frequently used a TTY terminal as
r

well as a card reader for input (device 4); and a TTY terminal as

well as a line printer for output (device 6).

Double precision arithmetic is employed . To decrease required

memory storage, only the frequency interval values and the full

magnitude response are saved. The section magnitude responses are

printed out, but are not stored. The program will produce approxi—

mately 21 pages of output.

Shown below are sample deck set—ups for the Chebychev and

Butte rworth low—pass f i l ters.
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Format Example

1 212 0302 (3 sections Chebychev low—pass)

2 FlO.6 0.001 (T = 0.001)

3 FlO.4 100 (to = 100 radians)

4 F5.3 0.10 (RIpple amplitude = 0.10)

S 2F10.4 70 0.06 (Start at to 70. ~t tp ~ 01

0.06 radians, Will finish ju~.t
past to = 131 radians.)

1 212 0201 (2 sections, 4
th order , Butterw

2 F10.6 0.005 (T = 0.005)

3 FlO.4 20 (to = 20 radiens)
C

4 2F10.4 0 0.04 ( S t a r t  -~~~ -J (1 ‘~~~~~~~

past to = 40 radians in stej.-~ o:

0.04 radians.)

The following pages contain annotated examples of output data.

This is an example of the output for a 4th ofder Butterworth

low—pass filter with T — 0.005 and u = 20 radians. The starting

frequency is 0 radians and the frequency increment is 0.04 radian .

WDC = 20.01668 wC = 20.00000 T = O.50000E—02

FOR I = 1 A0 = O.10000000E+O1 A1 
= 0.20000000E+Ol

A2 
= 0.l0000000E+O1 K1 

= O.22869799E—02

B
1 

= O.l82l96l4E+Ol B2 
=

FOR I = 2 A
0 

= O.10000000E+O1 A1 
= O.20000000E+01

A2 = O.10000000E-s-Ol = O.24059972E-02

B1 
= O.19l67786E+Ol B2 

= 0.92640257E+OO

W H Hl H2

0.0000 O.10000E+Ol O.10000E+Ol O.10000E+Ol
0.0400 O.10000E+Ol O.10000E+Ol 0.l0000E+Ol
0.0800 0.99999E+OO O.99999E+OO O.10000E+O1
0.1200 0.l0000E+O1 O.99997E+OO O.10000E+Ol
0.1600 0.l0000E+Ol O.99995E+O O O.10000E+Ol
0.2000 O.l0000E+O1 O.99993E+OO 0.I0000E+O1
0.2400 0.l0000E’f-Ol O.9999OE+OO O.l000lE+Ol 

~~~~~~~~~~~~~~~ :. ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _
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I is the i
th stage. I varies from 1 to N.

WDC is the prewarped cutoff frequency.

WC Is the cutoff frequency.

T Is the sampling Interval.

A0, A1, and A2 are the low—pass filter numerator 
coefficients.

B1 and B2 
are the low—pass filter denominator coefficients.

K1 is the gain factor.

W Is the frequency.

H is the overall magnitude of the digital transfer function .

Hi is the magnitude of the digital transfer function (1
st 

stage).

H2 is the magnitude of the digital transfer function (2nd 
stage).

H =

See Figure 4.

This is an example of the output for a 6
th order Chebychev

low—pass filter (three second order stages cascaded) with T = 0.005

and to = 20 radians. The starting frequency is 0 and the frequency

Increment is 0.04 radian. The ripple is equal to 0.100.

WDC 20.01668 WC = 20.00000 T = O.50000E—02

A = 0.24783947 B = 1.03025433 K8 
= 0.12829114 K2 

= 0.99443709
A = 0.24783947 B = 1.03025453 K

8 
= 0.35049793 1(

2 
= 0.56142438

A = 0.24783947 B = 1.03025453 K
8 

= 0.47878908 K2 
= 0.12841170

FOR I = 1 A
0 

= 0.10000000E+O1 A1 0.20000000E+Ol

A1 = O.10000000E+Ol = O.23830688E—02

B1 
= —0.l9774006E+Ol B2 

= O.98727357E+OO

WDC2 = O.40066761E+03 G(I) O.l6142562E+06 A = 0.96548939E+0O

FOR I = 2 A0 = O.10000000E+Ol A
1 

= O.20000000E+Ol
A2 

= O.l0000000E+0]. 
~l 

= O.l332l469E—02

B1 
= —0 .l9600541E+Ol B2 

=

_ _  _
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W DC2 = O.40066761E+03 G(I) = 0.163O3127E+06 A 0.96548939E+OO

FOR I = 3 A0 
= O.10000000E+Ol A

1 
= 0.20000000E+Ol

A2 = O.10000000E+Ol K1 
= O.303l0788E—03

B1 
= —O.19519613E+Ol B2 

= O.95321709E+OO

WDC2 = O.40066761E+03 G(I) — 0.l6388496E+06 A = 0.96548939E+00

14 4 111 H2 IH

0.0000 0.89998E+00 0.96549E+0O O.96549E+00 0.96547E+00
0.0400 O.89999E+OO 0.96549E+O0 O.96549E+00 O.96548E+00
0.0800 0.9000lE+0O O.96550E+00 0.96551E+00 0.96547E+00
0.1200 0.90009E+00 0.96552E+0O O.96554E+OO 0.96550E+00
0.1600 0.90016E+00 O.96555E+00 0.96558E+0O 0.96SSlE+00
0.2000 O.90028E+OO O.96558E+00 O.96564E+O0 0.96555E+00
0.2400 O.90042E+00 O.96563E+O0 O.9657lE+0O 0.9b)5~r..-t-u~

WDC is the prewarped cu tof f  frequency .

WC is the cutoff frequency.

T Is the sampling interval.

B, A = 
4 

((~ e
_2

+l+c l ) l/2N ± (~ c 2+l+c l)~~ /’2N )

I is the i stage , I varies from 1 to N.

K8 
= 2Acos0.

2 2 2 2
= A cos 0+B sin 0.

A0, A1, and A2 are the low—pass f i l ter numerator coeff ic ier ,t s .

B1 and B2 are the low—pass filter denominator coefficients.

K1 is the gain factor .

WDC2 = (WDC) 2.

G(I) = 
4 + 4JDC.K8 + (WDC)

2
K
2
.

r 1 ~l/ 2N
The A following 0(I) is a 2

Li + C

W is the f requency.

H is the overall magnitude of the digital transfer function.
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Hi Is the magnitude of the digital transfer function (1
st stage).

112 is the magnitude of the digital transfer function (2~~ stage).

rd
H3 is the magnitude of the digital transfer function (3 stage).

H = Hl*H2*H3.

See Figure 8.
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INTRODUCTION

This report contains the documentation for the BPASS program. It

consists of the design procedure used , a description of the program ,

and design examples using the program.

The purpose of the BPASS program is the design of either a

maximally f la t  But te rworth or a Chebychev filter with equal ripple in

the pass band . For each type of filter there is a choice of band—pass

or band—stop filters. Starting with an analog filter , the bilinear

Z transform is used to design an equivalent digital filter . The user

enters the low—pass filter order , the type of filter desired , the

sampling interval , the upper and lower cutoff frequencies , the 
- 
-

starting frequency and frequency increment, and if a Chebychev f ilter 
H

is being designed , the ripple. The low—pass filter sections are

transformed to second order band—pass or band—stop sections. Then the

program generates the digital filter coefficients for up to six

second order sections in cascade or up to a 12th order filter. The

design is carried out in the frequency domain . The program calculates

the transf”r function coefficients for each second order section , the

magnitude function for each section, and the final cascaded filter

magnitude response over the frequency interval specified by the input.

The BPASS program , written in Fortran W is supplied as a card

deck with this report. The program is in the form of a subroutine and

can be used as is by a call statement f rom the main program . Data

may be input via cards with output available through a line printer.

The input/output devices may be altered as explained in this report.

Graphic routines may easily be appended to the program .
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I. Design Procedure

A. Preliminary Discussion

One common me thod of designing a digital filter is to start

with an analog transfer function H(S) and transform it to the

digital transfer function H ( Z ) .

The transfer function of a second order digital filter In the

Z domain is given by

K (A Z 2 + A Z + A2)H(Z) 1

2

0 1 (1)
Z + B

1
Z + B

2

where the A ’s and B ’s are the coefficients of the ni.unerator and

denominator respectively. This program will calculate the scale

factor K
1 

and the coefficients A0, A1, A2, B1, and B2. The

transformation used Is the extended bilinear Z transform

(2)

where T is the sampling interval. When the extended bilinear Z

transform is employed , the desired frequencies must first be pre—

warped to make them compatible with the digital filter . In the

band—pass and band—stop filters, the upper and lower cutoff frequencies

and the center frequency of the filter are of interest. Calling the

upper and lower frequencies w and w
1 

respectively, the pre—

warped upper (WDU) , lower (WDL) , and center (WDM) frequenc ies and the

bandwidth between WDU and WDL are fou nd by 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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2 uWDU j~ 
tan(—~—)

2 w 1T
WDL = 

~~ tan(—1--)

11—.—
~ 

(3)
I/u  w T

WDM =~~~tan L u l

WE = W D I J - W D L

and are specified by the designer and the prewarping is done

by the program.

In the design procedure for all band—pass and band—stop f i lters of

order n’, (n’ even), the program begins by first finding the poles

for the corresponding n’/2 order low—pass filter. The low—pass

filter is then transformed into a band—pass or band—stop filter of

order n’, (a’ = 2n) .

B. Butterworth Band—Pass Filter

We start with a normalized second order low—pass Butterworth

filter transfer function in the S plane

2 
1 (4)

S + 2Scos8 + 1~

where the angle 0 is in degrees (in the program) and may be found

from the Butter-worth circle and the relationship

* e~~~~~
’
~
’ — 1)/2n (5)

where n is the order of the low—pass filter and in — 1, 2 , . . . ,  n.

This relationship -is determined by the following procedure . By

definition , a filter is nth order Buttarworth law—pace If Its gain

characteristic Is
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- a
2 

2n 
(6)

1 + (!~~~~)

where a is the DC gain, w is the desired cutoff frequency and a

is the order of the low—pass filter.

In the design, the poles of H(S) must be found. The procedure

is as follows:

= H (jw )H (ju) = Hn(ju)Hn (jw) = H~ (jw )H~ (_ jw)

= [H(S)H(_S)]
s = 

a2 

2n1 
a2 

2n
l + ( ~ —) ..L s 1 + ( - ~~-.)

2a 
, for n even

= a2 [ ]
1 

2 
a 

, for a odd
I u I ac .~ Is2

~ I —2
L C

Setting the denominators equa l to zero ,

= (±l)~~
2n 

. (8)

Th us, the pole locations are the 2n roots of ±1, depend ing on

whether the low—pass filter order is odd or even. These roots are

located on a circle with radius W~ centered at the or igin of the S

plane and have syninetry with respect to both real and imaginary axes. - 

-- -~~~- - -- -~~~~~~~~~~~~~ ---~~~~~ — -~~~~~~~~ --
,

-~~~~~~~~ --~~~~~-- -~~~~~~~~~~
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For n odd , a pair of roots are on the real axis and the rest are

separated by n/n radians. For n even, a pair of roots are located

ir/2n radians from the real axis and the rest are again separated by

it /n radians. No roots are on the imaginary axis, for either even or

odd n.

Let p1,... ‘~ 2n be the roots. From the symmetry of the pole

locations , if p1,. . ,p are the roots lying in the right—half plane,

the left—half plane roots are —p1,. . . ,— p .  The magnitude—squared

function can then be written as

2 n 2 na (—1) w
Hn
(S)H

n
(_S) = 

(S + p1).. .(S + ~n”~ 
— p1

)...(S - 
~~~~~~ 

. (9)

To be stable , H (S) must have all its poles in the left—hand plane,

thus
a

H (S) = (S + p.). . . (S + ) 
(10)

The program Is written with unity gain at DC , (u — 0),  therefore

a — l .

In order to locate the poles as specified above, consider the

following set of equations.

±j n ( 2 m  — 1)
1 — e  , m = l , 2,..., n; for a even

-1 = _e±j2~~ , k = 0, 1,..., a; for a odd 
(11)

Substituting equations (11) into equations (8) yields

S 4j - TT (2 m — l)/2n
~ , m — 1, 2,.., a; f or n even

(12)

= ~~~~~~~~ , k — 0, 1, ..., n;  for n odd

- 
-
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Equations (12) wIll give the pole locations as described above.

Consider the form of equations (12)

S —u ~±j0 u
~~
[_cos8 ± jsine] . (13)

From this relationship, it can been seen that the magnitude for each

pole is w , regardless of the angle, and thus all the poles lie on a

circle with radius wc
As an example, consider a second order filter, n 2.

(L] = _e±j~~
2in — 1)14 in 1, 2u ±m

C

S u / ~ 45°±1 c~~

V S w /± 135°±1 c

0 = 450

The relationship of these roots about the circle of radius is

illustrated in Figure 1. The angle 0 is always measured from the

negative real axis.

In the program, only the angle(s) less than 90° are cons idered

so that the poles lie in the left—half plane because poles in the

left—half plane are stable. PuttIng 0 — 45° into equation (4)

yields poles at —0.707 ±j0.707. These locations are in the left—half

plane. From equations (12), for low—pass filter orders n — 1, 2,...,

6, the values of 0 are given below.

V -
-

V V 

- ~~~~~~~~~~~~~~~~~~~ ---— ~~~~~ — —i. —~~~ — — ~~ .— — ~~k - ~ —
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Second Band—Pass
Low—Pass Order Band—Stop
Filter Cascaded Filter
Order Angle Sections Order

n 0 N 
_______

1 0° 1 2
2 450 2 4
3 600, 00 3 6
4 22.5° , 67.5 ° 4 8
5 72° , 36°, 0° 5 10
6 75° , 45 0

, 15° 6 12

a is the order of the low—pass filter and is used to determine pole

locations. n is also the number of second order band—pass or band—

stop sections which results from the transformation of the low—pass

filter sections and which will be cascaded to form the band—pass or

band—stop filters of order n’. The transformation is explained below.

The calculated angles are incorporated in the program in the order

given above.

Given the normalized second order low—pass transfer function

equation (4), we transform this low—pass into a band—pass transfer

function for some bandwidth WE, and center freq uency WDM by

‘i~~n~ the transcorm

+ WDMs ’ .  (14 )

Equation (4) then transforms to a 4th order transfer function

— 
s2wB2

S + S 2WBcosO + S (2WDM + WE ) + S2WB WDM cosO +

(15)

Using the root finding subroutine “POLRT” from the IBM Scientific

Subroutine Package (SSP), the roots of the denominator of equation (15)
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are found . (Note: POLRT has been attached to BPASS as a double

precision subroutine and Is included in the card deck). The roots

found will be complex conjugate pairs. Calling the real and imaginary

parts of the pairs RE1, AIM1, RE2 ,  AIM
2 equation (15) is factored

to yield two cascaded second order sections

— SWE SWB

S - 2SRE~ + RE
1 

+ AIM
1 

S - 2SRE
2 + RE

2 
+ AIM

2

For each 0 of a given N, the program calculates roots for both

sections of equation (16) and labels them the ith and the ith + 1

section. If N , the number of second order sections specified , Is

even, the program will calculate N paits of RE and AIM values

or 2N = n’ roots. If N is odd , the last value of 0 is 0.

Substituting e = 0 into equation (4) and factoring yields two

identical first order sections, 1/(S + 1). The program will calculate

N + 1 pairs of RE and AIM values, but because the last two pairs

are the same due to the identical first order sections, the last pair

will not be used.

Because both second order sections of equation (16) are of the

same format , we will deal with only one section, the ith section

and let

—2RE = Di i (17)
RE~ + AIM~ — C1

The design of an n ’th order band—pass or band—stop filter leads to

n ’/2 second order sections. Substituting equation s (17) into one
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section of equation (16) yields the tranBfer function for the ith

section

H
i

(S) = 2 
SWB 

(18)
S + S D . + C .

1 1

The extended bilinear Z transform, equation (2) Is used to get to

the digital domain. Fanploylng equation (2) on equation (18) yIelds

H (Z) for the ith second order section.

—WBZ — —4~JB
= 

2D 
I T 

2D (19)

+ —~~ -~~- + C1) + Z(2C . — !~.) + — + C .)

Putting the denominator of equation (19) in monic form yields the

transfer function for the ith second order stage of the filter

K (Az2 + A z + A )
H~ (Z) 11

2 
0 1 2 (20)

Z + B 11Z + B 21

This equation is the same as equation (1) wIth the exception of the

su . .~~.:ipts.  For all four f i l ter  types discussed here , the scale

factor , K1, and coefficients B1 and B2 are a function of the

section calculated , while the coefficients A0, A1, and A2 are the

same for all sections calculated. In going from equation (19) to

equation (20) we have

-- ~~-V~~~~~~~~~~~~ -- V-- ---- V~~~ - - - -- - - - -  ~~V--- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ----~~~~~~~~~~~~~~~~ V------~~~~~~~~~~~~ -- - ---V - -~~~~~~~~~~~~ -V
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2A0 - ~WB

A1 — 0

A
2
= -~~WB

~ 
2D~

(21)

K
1 i G ~

2C
1

-
~~~~~~~
-

B11
= 

T

2D
2 T

B2~~ = G1

Letting Z = eST = ejuT for S — j u and taking the magnitude of

we have

cos(2wT ) + A cos (wT) + A ) 2 + (A sin(2wT ) + A sin (w T)) 2
0 1 2 0 1

“~

‘
cos(2wT) + B11cos (uT) + B2i)

2 + (sin(2wT ) + B11sin (w T)) 2

(22)

The magnitude function, equation (22) is the same for all the filters

discussed in this report.

C. Butterworth Band—Stop Filter

The design procedure is almost exactly the same as that

of the Butterworth band—pass filter, except that the transformation

to band—stop is the reciprocal of equation (14), i.e.

SWB
2 2 (23)

5 + WDM
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and we f ind H
1

(S) to be

H . ( S )  = 
S2 

+ WDM~ (24)
S2 + S D  + C .1 1

After employing the extended bilinear Z transform, equation (2),

we have

A0 
= A2 

= ~~~+ WDM~
T (25)

A1 T

and B1~~. B2 ,  K 11 are the same functions of C1 and D1 
as in

equation (21). These coefficients are then used in the calculation

of equation (22) to find

D. Chebychev Band—Pass Filter

The Chebychev filter ripples with equal amplitude in the

pass—band . The amount of ripple is specified by the quantity ~

(labeled RiP in the program). The poles of the filter are found on

an ellipse described by two Butterworth circles of radii A and B

“ A c B. The location of the poles on the ellipse is a function of

the ripple and is given by the following equation :

B , A = 
1((,4_2 + 1 + £ 1) 1/N ± k2 + 1  + c a/N ) (26)

where

1 
2~~~~

I (27)
L(l —~~) J

and N is numerically equal to the order of the low—pass filter

which is transformed to yield the band—pass f i l ter.  B is given
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— for  the plus sign and A for the minus sign. The Chebychev ellipse

then has major ax is B and minor axis A. The location of the S

pla ne poles on the ellipse is given by

Real Part = A cosO

Imaginary Part = ~ sinO (28)

The 0 ’s are the same as given for the corresponding order

Butterworth filter. An example of Chebychev pole locations is

i l lustrated in Figure 2. For A = 4 and B 1 in a fourth order

filter, 0 22 .5°  and 67.5° . The Chebychev pole locations are

determined from equations (26), (27) and (28) .

The analog second order Chebychev low—pass filter is

K I  1 12/N
2[~~ 2]

2 
. (29)

S + K 8S K2

c is calculated from equation (27) and N is equal to the order of

the low—pass f i l t e r  which Is transformed to yield the band—pass f i l t e r .

K8 ~nd K
2 

are calculated by

K8 
= 2AcosO (30)

K2 
= A2cos2O + B

2sin2O . (31)

The substitution of the low—pass to band—pass transformation,

equation (14), into equation (29) yields

s2ws2ic [ 1 ~ 2fN

H (S) - ~~~~~~~~~ (32)- 

s4 + S3K8WB + S2(2WDM2 + K
2

W B )  + SK
8

WDM2WB + WDM4

~~~~~~~ 

~~~~~~~ ~~~~ --- .~~~~ —
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After finding the roots of equation #32 ) and making the substitutions

given by equations (17) we find the ith second order section

SWK
H (S) = ,,I SL + S D + C

1 1

K 1 i l/N . (33)
I l  21
[
~I l + c j

Applying the extended bilinear Z transform equation (2) yields an

equation of the form of equation (20) where

A0 
= 1

A1 — 0

A2 
= — l

K 
2WB K

3
11 T G1 

(34)

B11 
and B21 

are the same functions of C~ and D1 given by

equations (21). These coefficients are then used in equation (22) to

find IH~ (iw)I.

E. Chebychev Band—Stop Filter

Given equation (29) for H(S) we apply the low—pass to

L band—stop transformation equation (23) to obtain the 4th order

transfer function

(S2 + WDM2)2K 
~ 

12/N
L A + c J

H1(S) = 

~ 3 2 2 2 2 . (35)
K2S + S K8WB + S (WE + 2K

2
WDM ) + SK

8
WDM WE + K

2
WDM

N is equal to the order of the low—pass filter which is transformed

to yield the band—stop filter .

-- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 

-
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After finding the roots of equation (35) and making the

sub t i!’~~4 nn 1 g 4 ”=n b~’ ef 1I1 ~~t Ions  (17) the ith second order section is

(S 2 + WDM2)K
3H . ( S) = 21 S + S D i + C j

K 3 
— 

1 (36)

[I’ + j
App lying the extended bilinear Z transform equation (2) yields an

equation of the form of equation (20) where

A - A  =~~—+W DM
2

0 2 I2

A1 
= 2WDM2 — !.. (37)

T -]
K.,

K = —
~~-

ii C .
1.

and B2 . are the same functions of C~ and D~ given by

equations (21). These coefficients are then used in equation (22)

to f ind ~H1(jw)l.

j

~
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V 
II. Using the Program

The first data card read into the program contains the number of

second order sections to be cascaded , N, and the type of filter

desired , KN. N is equal to 1, 2 , . . . ,  or 6 , which corresponds to

the order of the low—pass filter , and hence corresponds to the 2nd ,

4th,..., or 12th order band pass or band stop f i l te r  respectively.

K!~ is the type of filter desired . The values of KN specifies

one of the four choices given by

1 Butterworth Band—Pass
2 Butterworth Band—Stop
3 Chebychev Band—Pass
4 Chebychev Band—Stop

The format on the N , KN card is 212.

The second data card read In is the sampling interval T in

Fl0.6 format. When choosing T, l/T should be approximately equal - :

to ten times the center frequency (WDM).

The third data card read in contains the values of the upper

and lower cu tof f  frequencies , u and w1, in 2FlO.4 format. For

the Butterworth filters, the cutoff frequencies are the —3db cutoff

frequencies. For the Chebychev f i l ters, the magnitude of the

response is 1/(1 + £2)2 = 1 — ~S at the cutoff frequencies. u is In

radians . ~ Is the ripple factor .

If the desired filter is Chebychev , I.e., KN — 3 or 4 , the

next data card contains the ripple (RIP) factor in F5.3 format.

If the desired filter is Butterworth , i.e., XN — 1 or 2 , this

card is omitted from the data deck.

-
- - ~~~~~~~~~~- -- -- - V 

~~~~~~~~~~~~~~ --- ---~~~~~~~~~~~ -.- 
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The final data ca rd is the starting frequency (FREQ 1) and the

frequency increments (DELI) in radians. The format of the FREQ1,

DELI card is 2F10.4. Determine DELT by the following :

DELT final frequency — starting frequency
1024

This is necessa ry because there are 1024 frequency data points

calculated in the program . Choose FREQ1 and DELT to insure that

calculated values will include the data of interest. For maximum

e f f i c i e ncy of the program , DELT should be a mult iple  of so no

decimal to binary conversion errors are incurred .

The digital filter coefficients are computed and printed out for

each second order section. The full filter magnitude response , as well

as each section magnitude response , is printed for each of the

specified frequency increments. When there is only one second order

section , the section magnitude ri sponse is the full filter magnitude

response and is only printed once.

The program may be easily modified to incorporate a graphics

display of the magnitude response. There is a comment card in the

BPASS program indicating where the graphics subroutine call card

should be inserted.

The program is wri t ten with inpu t obtained via device 4 and

ou tpu t wri tt en to devIce 6. These numbers should be assigned to the

appropriate devices prior to running the program .

The program was developed on a PDP—ll/20 with a DOS/BATCH

operating system. Trial runs frequently used a TTY terminal as well

as a card reader for input (device 4 ) ;  and a TTY terminal as well

as a line printer for output (device 6). Double precision arit1~netic 

- --V- - - -
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is employed . To decrease required memory storage, only the frequency

interval values and the full magnitude response are saved. The

V section magnItude responses are printed out , but are not stored .

The program will produce approximately 21 pages of output .

Shown below are sample deck set—ups.

Data
Ca rd Format ~~p1e

1 212 0504 (5 sectior . Chebychev ban~ —sL o)
2 Fl0.6 0.002 (T = 0.002 )
3 2FlO .4 60 40 (w = 60 , = 40 radians)

4 F5.3 0.10 (Ripple amplitude = 0.10)
5 2FlO.4 0 0.1 (Start at u = 0. Steps o!

0.1 radian. Will ~inish
just past w = 102 radiarv .)

1 212 0401 (4 sections Butterworth bai~1— p.ss)
FlO.6 0.002 (T — 0.002)

3 2FlO .4 60 40 (w = 60 , = 40 radians)

4 2F10.4 0 0.1 (Start at u 0. Steps of
0.1 radian . Will finish
just past w — 102 radians).

The following pages contain annotated examples of output data.

-- —- V - - - -  ___ -
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This is an example of the output for an 8th order Butterworth

band-stop filter (0402) with I = 0.002 , = 60 radians , and

= 40 radians . The starting frequency is 0 radian and the frequency

increment is 0.1 radian .

WDU = 60.07210 WDL = 40.02135 WDM = 49.02902 WB = 20.05076
T = 0.20000E—02

THE L OOTS OF THE FILTER ARE GIVEN BELOW
REAl 1) = —6.52659476 IMAGINARY(l) = —44.4678674fl
K 

~~) 
= —c~~i ;88916 1~”AGINAR?(2) = —52...40959

PEAL (3) —4.~ ~76S57 i’~ACINARY (3) = —59.0158887C
REAL 

~+) = —3.U232691 1NAG~NAkY(4) = —40.49140500

T ~E EFFIC :~~~
V VN~ C~~ EACH DIGITAL FILTER SECOND ORDEi< SECTION ARE

GIVEN BELOW
= 1 A0 = O.10024038E+07 A = —O.19951923E+07

A2 
= 0.10024038E+07 K

’ = O.981’5481E—06
B1 = —0.19584863E+0l B~~ = 0.96653295E+O0

FOR = 2 A
0 = 0.10024038E+07 A = —0.19951923E+07

A2 
— O.10024038E+07 K~ = 0.97769448E—06

B
1 

= —0.1.9498774E+O1. B2 
= 0.96090048E+00

FOR r = 3 A0 = 0.l0O24038E+07 A = —0 .19951923E+07
A2 = O.10024038E+07 K1 = 0.98755180E—06
B1 

= —0.1968l836E+0l B~ = 0.98202353E+00

FOR = 4 A
0 

= O.lOO24038E+07 A — —0 .l995l923E+07
A., = 0.10024038E+07 K’ 0.99216788E—06

V ~~~~~~~~~~~~~ — n - — , -  — -.
1 - -- - 2 - -  - V - —

W H 1-il 112 113 H4
O.OC )O O.10000E+01 0.11726E+Ol O.85284E+0O O.686llE+0O 0.l4575E+0l
0.1000 O.10000E+Ol O.ll726E+Ol 0.85284E+OO 0.686llE+00 0.l4575E+Ol
0.2000 O.l0000E+O1 O.ll726E+Ol O.85284E+0O 0.686l1E+0O O.l4575E+Ol
0.3000 O.99999E+00 0.1l726E+01 0.85283E+0O 0.68610E+00 0.l4575E+01
0.4000 O.l0000E+0l O.11726E+O1 0.85283E+0O 0.68609E+00 O.l4576E+Ol
0.50~)O 0.10000E+Ol O.11726E+Ol 0.85282E+0O 0.68609E+00 0.14576E+0l
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WDU is the prewarped upper frequency.

WDL is the prewarped lower frequency .

WDM is the prewarped center frequency .

WB is the bandwidth , WDU — WDL .

T is the sampling interval .

The Real and imaginary part of the roots of the filter are given next.

— I is the ith stage . I varies from 1 to N.

A0, A 1, A 2 are the Butterworth band—stop f i l t e r  numerator coe f f i c i en t s .

V 
K
1 

is the gain factor.

B1, and B2 
are the Butterworth band—stop filter denominator coefficients.

W is the frequency

H is the overall magnitude of the digital transfer function

Hi is the magnitude of the digital t ransfer  func t ion  (1st s t age) .

112 is the magnitude of the digital transfer function (2nd stage).

H3 is the magnitude of the digital transfer function (3rd stage).

H4 is the magnitude of the digital transfer function (4th stage).

See Figure 4.

—

~ 

—-  - -  ~~~- V~~~~~~ — — -- -— — - -  - -V— - 
~~~~~~~~ 
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This is an example of the output for an 8th order Chebychev

band—pass filter (0403) with I = 0.002 , u = 60 radians , and

= 40 radians. The starting frequency is 0 radian, the frequency

increment is 0.1 radian , and the ripple is 0.1.

WDU = 60.07210 WDL = 40.02135 WDM = 49.02902 WB — 20.05076
T = O.20000E—02

A = 0.37642105 B = 1.06850027 K8 
= 0.69553541 K2 = 0.28813942

A = 0.37642105 B = 1.06850027 K
8 

= 0.28810020 1(
2 

= 0.99524620

THE ROOTS OF THE FILTER ARE GIVEN BELOW
REAL( 1) = —3.19528085 INAGINARY(1) = —44.97792290
RF.A L(2) = —3.77772492 IMAGINARY(2) = —53.17662810
REAL(3) = —1 .15829660 INAGINARY(3) = —40.10115290
RE AL ( 4 )  = — 1.7300 1696 IMA GINARY(4 ) = —59.89456990

THE COEFFICIENTS OF EACH DIGITAL FILTER SECOND ORDER SECTION ARE
GIVEN BELOW

FOR I = I A0 = O.10000000E+0l A
1 

= O.00000000E+OO
A2 —0.10000000E+O1 = O.10395603E—O1
B1 

= —0.l9792607E+01 B2 
= O.98732565E+00

FOR I = 2 A0 = O.10000000E+01 A
1 

= 0.00000000E+OO
A
2 

= —0.10000000E+01 K = 0. 10375296E— Ol
B
1 

= —O.l9737935E+Ol B~ = O.98504460E+0O

FOR I = 3 A0 = 0.l0000000E+Ol A
1 

= O.00000000E+0O
A2 

= —0.10000000E+01 K
1 

= 0.19406846E—O1
B1 —0.19889723E+O1 B2 

= O.99538493E+0O

FOR I = 4 A = O.10000000E+01 A = O.00000000E+O0
4 = —O.10000000E+O1 K~ = O.l9346636E —0 1
B
1 —O.19788675E+Ol 

~2 
= 0.993l2838E+OO

W II Hi 112 H3 114
0.0000 O. 00300E+00 O.00000E+O0 O.00000E+O0 0.00000E+O0 O.00000E+O0
0.1000 O .12493E—12 0.51560E—03 O.36886E—03 O.12l06E—02 O.54265E—03
0.2000 O.19990E—ll O.10312F—O2 0.73773E—03 O.2421lE—02 O.lO853E—02
0.3000 O.10121E—l0 O.15468E—02 0.11066E—02 0.36318E—02 O.16280E—02
O.~

0O() 0.31991E—l0 0.20625E—02 O.14755E—02 0.48426E—02 0.21707E—02
(L 00() fl.78116F—lO O.25783E—02 O.18445E—02 0.60536E—02 0.27134E—02

- ------—--— -



- _ _ _

—17 3—

WDU is the prewarped upper frequency.

WDL is the prewarped lower frequency.

WDM is the prewarped center frequency .

WB is the bandwidth , WDU - WDL .

T is the samp ling interval.

B, A = I ( (/  
2V-
~~~ + c

_1
)h/N 

+ (/~_2 
+ 1 +

K8 
=

= A2cos
2(8) + B2sin2(@)

~he Real and Imaginary part of the roots of the f i l t e r  are given next .

I is the ith stage . I varies from 1 to N.

A0, A 1, A 2 are the Chebychev band—pass filter numerator coefficients.

K1 is the gai n fac tor .

B1, and B2 are the Chebychev band—pass filter denominator coefficients.

c1 is the frequency.

H is the overall magnitude of the digital transfer function .

111 is the magnitude of the digital transfer function (1st s tage) .

H2 is the magnitude of the digital transfer function (2nd stage).

113 is the magnitude of the digital transfer function (3rd stage).

H4 is the magnitude of the digital transfer function (4th stage).

See Figure 5.

_ . 
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MAGN ITUDE VS FREQUENCY
FOR

DIGIT AL TRANS FER FUNCT ION

8th  ORDER BUTTERWO RTH BAND-PASS FILTER

N = 4
Start  at w — 0 radian
T = 0.002
Steps of 0.1 radian
w = 60 radians
U

w = 40 radians

1.0 -

0.9 -

0.8 -

0.7 -

~~~
. 0.6 -

0.5~~
S

0.4~~
S
z

0.3 -

0.2 -

0.1~~

0.0 I I I I

0 20 40 60 80 100

C1 u

w (rad ians)

Figure 3
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MAGNITUDE VS FREQUENC Y
FOR

DIGITAL TRANSFER FUNCTION

8
th ORDER BUTTERWORTH BAND—STOP FILTER

N = 4
Start at w = 0 radian
T = O . 0 0 2
Steps of 0.1 radian

= 60 radians
U

w = 40 radians

1.0

0.9 -

0.8 -

0.7 -

0~6 -

0.5 -

} 0.4 -

0 2~ 8~ lO~

o (radians )

Figure 4
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MAGNITUDE VS FREQUENC Y
FOR

DIGITAL TRANSFER FUNCTION

8
th ORDER CHEBYCHEV BAND— PASS FILTER

N — 4
Start at w = 0 radian
Ripple = a = 0.100
T = 0.002
Steps of 0.1 radian
o = 60 radians

U
o = 40 radLans

V 

0.(____

1) 20 40 60 81) 100

C C
1 u

w ( radians)

Figu re 5
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MAGN iTUDE VS FREQUENCY
FOR

DIGITAL TRANSFER FUNCTION

ORDER CHEBYCHEV BAND-STOP FILTER

N =  S
Start at C = 0 radian
Ripple = a — 0.100
T 0.002
Steps of 0.1 radian
w = 60 radians

U -= 40 radians

0.1

0.7 -

0.6.

L..

0~~

0.4~

V 

0.0 
2~ 4~~~ 

8~ l~~

w ( r a d i ans )

Figure 6
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Abstract

The use of a parameter identification procedure to detect

faults in hardware used to implement a broad class of linear

algorithms defined as digital filters is presented . Using the

filter coefficient estimates produced by the identifier a method

of measuring the acceptability of the filtering algori thm is

suggested and a numerical example is given.
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IN T RODU CT ION

Today ’ s inteqrated c ircuit technology has provided inexpensive dig ital

hardware that can be used for the direct implementation of the digital

signa l processing algoritliiis utilized in a variety of coninunication and

control systems. In these applications , there is a need for new methods

of failure analysis. While it is desirable to know when a hardware fai ii~re

occurs , and to know where the failure is located , it is a s o  impo rtant

know what effect the failure has on algorithm performance. In many cases

a fa i lure , such as losing the least significant bit in a register , wi l l  not

signi ficantly degrade performance and there is no need to consider switching

to a redundant implementation.

Currently, most of the work on fa ilure analysis is described under the headinq

of fault detection . From an operat ional point of view , designers are concernec

w i t h  the development of fault tolerant computer systems . However , i n  both

cases the nardware is usually considered and little attention is given ~o

the -interaction between the hardware and the algorithm to be implemented .

To provide more information about algorithm performance , the problem of

mathematica lly describing failure detection and diagnosis has recently been

niven attention . Mehra and Peschon Ill suqgested implementing a Ka lman

n~ter in parallel wi th an algorithm implementation and using the statistics

of the innovations process for detecting system failures. Davis [2] shows

~ method for using a Ka lman filter to estimate the time when a failure

occurs. He then recorm~iends readjustment of the filter parameters to obtair

new state estimates after the occurence of the fault. Krischer 131 , ir~ ~r

d pp ilcations oriented approach , applied a parameter Ident ification ~-proach 
-

to ~-st imate the state of a biological system as the system paramet&~rs s o - ~’ -

vary.

~ 

-
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n this paper , a parameter idei- itification procedure simila r to tha t ;~~~~~~~~~~~~~~~~~~ _

oy Mend el and Fu ~4i is used to detect faults in the implementation of a

broad class of algorithms defined as digita l filters. Given a design , the

filter coefficients are used as Initial conditions for the identifier operating

in parallel w i th  the filter. The i dentifier output consists of an estimate

of the filter coeffic~ents and an error signal . When a fault occurs , the

error s ignal and the coefficient estimates will change rapidly during the

next few samp ling times . If the fault is very serious , such as complete

ai Iure of the multip lier , the algorithm impl ementation no longer exists anc

tota l failure has occured . If, however , the failure is not total so that

the effect  is to modify the filter coefficients , the coefficient estimates

will converqe to the new values . At thi s point , the effect  of the c o e f f i c i e n t

changes must be evaluated to determine if the algorithm characteristics are

still satisfactory . In this paper this is done by establishing bounds on

the steady-state magnitude and phase functions. If the change in the

coefficients allows these bounds to be satisfied , the filter operation is

conside red to be acceptable.

The procedures described have several advantages . First, remote sensin g on

an alaorith m implementation can be accomplished. Secondly, the iden ti fier

can be used w i t h  any l inear system that can be modeled by a difference

equation. Thirdly, a better assessment as to the need for switch ing in an

~1 r~ rnate al gorithm implementation is available.

-- — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
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THE DIGITAL FILTER MODE L

An nt h order t ime i n v a r iant l inear d ig ita l f il ter is represented by the

expression

- 
m n

yfnT i~~~ a k X [(n-K)T] ~~ V b . y [ (n_j)T 1 (1)
k~O j~ l 

-j

~nere the coeff eient sequences {ak} and ~b~ 1 are chosen to uc hie ’~: ~~

desired fi lter characterist ics. Using a vector representation ( i i  can he

rewritten as

y[nTl = atxlnT] - bt~ [(n l )T1 (2)

where

at = [a 0 a1 . . am], (~~~~)

[h1 b2 . b,,], (4)

fx [ iTl
x [nT~ = ~[ (n—1 )T ] (5)

xr (n-m)T]

and

{y[(n-l )T]
y (n-i)T] .1y[(n~2)T) (6~

ty(OT]

Letting
a

c_ =

~~~

-

~~~~

- (7 ’ 
-

= yfriT] (P.) 

-- --V --—- ~~~~~~~~~~~~~~~~~~~ 
V -
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dfld

x[nT]
u[nT] ---  (g )

~.[(n-1)T]

~2) can he rewritten as

z[nTJ = u~ [rifl c = <u[nT],c> (1~~
Equation (la) now represents the model for the digital filter that is us~ .

in the identification algorithm .

THE IDENT I FICAT I ON ALGORITHM

The ide r,tification procedure is a sequential gradient descent algorithm

utilizing a quadratic cost functi on. The model is depicted in the block

diagram of Fig. 1. Here, at time t=n T the actua l digita l filter output is

y[nT] and the current input is u[nT]. From (10) the filter model is now

ex pressed as

z [nT ]= u
t
1nT]2~[nT] (11)

Where aEnT is the approximation of the parameter vector c at time t=nT.

Jc:fi r~inc tne error as

e~nfl ’-y [nT]-z[nT] (12 )

.he quadradic error function is

J[~ 1nT]]=~ [y[nT]_z[nT]] 2 (13)

rini mize J1~[nTJ] a multidimensional form of Newton ’s method is used

g vina the recursive expression

~:[(n+l )T]~~CnT~ ~R~nT ] grad [J[~ [nT]]]. ( 14)

Where R[nT is an nxn matrix whose coefficients are yet to be specifie~i .

From (3) the expression

graa  Jr2i ri T]]= -e~nT ]u [nT ] (1 5~
-is obtained . Substitution of (15) into (14) now yields the recurs-~ve 

- - - ___ V_ -
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express ion

‘2[(n+l )T]=’2[nT)+R[nT]e[nT]~j:nT] (16)

Mendel and Eu [7], show that for the cho ice
I

R[nT]= t ( 1 7 )
~ [nT]u[nT]

V convergence in the mean for ~[nT] as n-t is obtained .

The addition of the measurement noise v[nT] and n [nT ] as shown in Fig. 1

causes the parameter estimates using (16) and (17) to become biased . To

avoid this a new error function

e [nT] ½[y[nT] - [z[nT]+v[nT]]j 2 (18)

is  used to give

21(n+l )T] = [I+R[nT]~1nT]]2[nT]+R[nT]e[nT]tu[nT]+n[nh]] (19)

where ‘
~[nT] is the nth estimate of the measurement noise covariance.

FILTER PERFORMANCE

r~i ven a dinital filter described by (1), the implementation of the filter

is usually done to minimiz e the effects of coefficient and rounding errors.

;~ practice thi s results in most filters being implemented as a cascade

or parallel connection of first and second order sections [5].

Given a cascade or oarallel connection , several options for util izin g

the identifier are possible. Fi rst, the identifier can treat the complete

structure as a single filter. However, for hiab order filters , the deter-

min ation of the coefficient sensitivities with respect to any error criter ior

is nenera lly very diffi cult. Secondly, the iden t i f i e r  can operate or

each first or secon d order section . Thi s a l lows a performance eva luation

~t the section level wh ich can be interpreted in terms of overall performar-.Le

because maqnitude and phase are often used to specify a di gital fi~ ter

desi nn , a change in the fi l ter coefficients, due to a faul t , will ‘e
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eva~uated co see if the specifications are still satisfied . Ihis iolIows

the coefficient desiqn procedure described by Brubaker [6].

For a second order filter wi th the transfer function

a~,+a1 7~
l +a2Z

2

~~Z) .

~ 

(20)
1~b..Z +b2Z

tne magnitude function is described by

= (21 )

wrere

A(~) 1a 0
2+a1

2+a9
2÷(2aoai+2a1a2) CO~wT + 2a0a2 C05 2~T~ 

½ (22)

and

+ b1
2 

+ h2
2 

+ 2b1 (1 + b2) coswl + 2b2 cos 2~T~ 
½ (23)

Us’nq (21 ) a differential maqnitude approximation can be written as

A~~ 1fjw ] ~~~~ ~~~~~~~~~

-

~~~~~~

-‘-- L\a~ + ~~~~~~~~~~~~~~~~~~ ~~ + - Aa2 +

b +1 ~b2 2 (24)

~‘e partial derivatives in (24) are qiven in [6] and by evaluatin g these

:er ,~tives over a frequency range of interest a region 
jr parameter space

~~ ~e estab~ished where fi lter performance is satisfactory for a given

t. ~~~~~~~~ A similar strategy can be Implemented for the phase function .

L~~~~~~ _
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expression

‘2[(n+l )T]=’2[nT]+R[nT]e[nT)~~nT] (16)

Mendel and Fu [7], show that for the choice
I

R[nT]=—t- ( 1 7 )
U [nTJu[nT]

convergence in the mean for ~[nT] as n-* is obtained .

The addition of the measurement noise v[nT] and n[nT] as shown’ in Fig. 1

causes the parameter estimates using (16) and (17) to become biased . To

avoid this a new error function

e [nT] ½[y[nT] - [ztnT]+v{nT]]]2 (18)

is used to give

~21(n+1 )Ti = {I+R[nT)~[nT]]2[nT]+R[nT]e[nT]tu[nT]+n[nT]] (19)

where ‘
~{nT] is the nth estimate of the measurement noise covariance .

FILTER PERFORMANCE

(iven a diqital filter described by (1), the implementation of the fi l ter

is usually done to minimize the effects of coefficient and rounding errors .

Tn practice thi s results in most filters being implemented as a cascade

or parallel connection of first and second order sections [5].

rive n a cascade or oarallel connection, several options for uti lizinq

the i dentifier are possible. Fi rst, the identifier can treat the complete

structure as a single filter. However, for hioh order filters , the deter-

mi nation of the coefficient sensitivities wi th respect to any error criterion

~s nenerally very difficult. Secondly, the identifier can operate on

each fi rst or second order section . Thi s allows a performance evaluation

at the section level which can be interpreted in terms of overall performance.

i ecause maqnitude and phase are often used to specify a digital fflter

desiqn , a change in the fi l ter coefficients, due to a fault , will ~e
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EXAMPLE

To illustrate using identification for fault detection consider the first

order digital fi lter

a 0.8Z~H ( Z )  = _____ = (1~ ’l-b 1Z l-O.85Z

For ~IH[jw] j = 0.1, the acceptabl e region for the fi lter coefficients is

shown in Fig. 2. The identifier response to the filter is shown in Fiq. 3

us h1 changes from 0.85 to 0.4. Initially the identifier tracks the

correct coefficients. When b1 changes the error signal changes rapidly

and converges to zero. The coefficient estimates converge to the new

values and the b1 coefficient of 0.4 does not allow satisfactory

oerformance through use of the region shown in Fig. 2. A redundant filter

would then be set into operation .
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Figurc 1. Block Diagram for the Gradient Identifier
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